第一节 数列的概念与简单表示【考纲下载】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第 1 项(通常也叫做首项).2.数列的分类分类原则类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1>an其中n∈N*递减数列an+1<an常数列an+1=an摆动数列从第 2 项起有些项大于它的前一项,有些项小于它的前一项3.数列的通项公式如果数列{an}的第 n 项与序号 n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.4.数列的递推公式若一个数列{an}的首项 a1 确定,其余各项用 an 与 an-1 的关系式表示(如 an=2an-1+1,n>1),则这个关系式就称为数列的递推公式.5.an与 Sn的关系若数列{an}的前 n 项和为 Sn,则 an=1.数列的通项公式唯一吗?是否每个数列都有通项公式?提示:不唯一,如数列-1,1,-1,1,…的通项公式可以为 an=(-1)n或 an=有的数列没有通项公式.2.如果数列{an}的前 n 项和为 Sn,是否对∀n∈N*,都有 an+1=Sn+1-Sn成立?提示:成立. Sn+1=Sn+an+1,∴Sn+1-Sn=(Sn+an+1)-Sn=an+1.1.已知数列,,,,,…,根据前三项给出的规律,则实数对(a,b)可能是( )A.(19,3) B.(19,-3)C. D.解析:选 C 由前三项可知,该数列的通项公式可能为an=.所以即2.已知数列的通项公式为 an=n2-8n+15,则 3( )A.不是数列{an}中的项B.只是数列{an}中的第 2 项C.只是数列{an}中的第 6 项D.是数列{an}中的第 2 项或第 6 项解析:选 D 令 an=3,即 n2-8n+15=3,解得 n=2 或 6,故 3 是数列{an}中的第 2 项或第 6 项.3.数列{an}中,a1=1,对所有的 n∈N*,都有 a1a2a3…an=n2,则 a3+a5=( )A. B. C. D.解析:选 D a1a2a3…an=n2,∴a1a2a3…an-1=(n-1)2,∴an==(n≥2),∴a3=,a5=,∴a3+a5=+=+=.4.在数列{an}中,a1=1,an=1+(n≥2),则 a5=________.解析:由题意知,a1=1,a2=2,a3=,a4=,a5=.答案:5.已知数列{an}的前 n 项和 Sn=2n-3,则数列{an}的通项公式是________.解析:当 n=1 时,a1=S1=2-3=-1,当 n≥2 时,an=Sn-Sn-1=(2n-3)-(2n-1-...