余角和补角说课一、学生起点学生的知识技能基础:学生在小学期已经接触认识过平行线、相交线,在七年级上学期,已经直观认识了角、平行与垂直。这些知识储备为学生本节课的学习奠定了良好的知识技能基础。学生活动经验基础:在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。具备了一定的图形认识能力和借助图形分析和解决问题的能力;并初步学习了在直观认识的基础上进行合情说理,将直观与简单说理相结合的方法;初步感受到推理说明的必要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务教科书提出本课的具体学习任务:了解补角、余角、对顶角的概念及其性质并能够进行简单的应用。但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课内容从属于“空间与图形”这一数学学习领域,因而必须服务于几何知识教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,发展学生的空间观念及推理能力”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:1.在具体情境中了解余角与补角,知道余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。2.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理地表达的能力;经历探索余角、补角、对顶角的性质的过程。3.通过学生动手操作、观察、合作、交流,进一步感受学习数学的意义,培养其主动探索、合作以及解决问题的能力。三、教学设计本节课设计了几个个教学环节第一环节探索发现如右图几何图形分三个层次提出问题,进行探究。1图中有几个角,分别是哪一种类型的角?2指出图中的直角与平角。3图中()+∠3=900,()+∠3=1800从而得到余角、补角的定义。想一想:4图中还有哪些角互补?哪些角互余5图中都有哪些角相等?由此你能够得到什么样的结论?在学生充分探究、交流后,得到余角、补角的性质。活动目的:通过活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,学会余角、补角的概念及其性质。同时发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。并在这个过程中,培养学生抽向几何图形进行建模的能力。第二环节练习活动内容:判断下列说法是否正确(1)300,700与800的和为平角,所以这三个角互余。()(2)一个角的余角必为锐角。()(3)一个角的补角必为钝角。()(4)900的角为余角。()(5)两角是否互补既与其大小有关又与其位置有关()总结提示:互余与互补是指两个角之间的数量关系,与它们的位置关系无关。活动目的:以判断题的形式引导学生逐步加深对余角、补角的概念及其性质的理解。澄清学生对概念和性质模糊的地方。用温馨提示的方式总结学生易错之处。活动注意事项:学生可能会认为概念和性质不难理解,但认识中却存在不清晰的地方。此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,充分展示他们的思维过程。在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象。第三环节议一议(探索发现对顶角的概念和性质)(1)∠1与∠2这样的两个角会相等吗?他们有怎样的位置关系?(2))用剪子剪东西时,哪对角同时变大或变小?你能说明理由吗(3)在上图中,还有相等的角吗?这几组相等的角在位置上有什么样的关系,你能试着描述一下吗?第四个环节练习活动内容:回答下列问题1.你能举出生活中包含对顶角的例子吗?2.下图中有对顶角吗?若有,请指出,若没有,请说明理由。CODBA123.议一议:如上图所示,有一个破损的扇形零件,利用图中的量角器可以量出...