1斐波那契数列2我们先来做一个游戏!3十秒钟加数请用十秒,计算出左边一列数的和。1235813213455+89??时间到!答案是231。4十秒钟加数再来一次!3455891442333776109871597+2584????时间到!答案是6710。5这与“斐波那契数列”有关若一个数列,前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列。即:1,1,2,3,5,8,13,……6一、兔子问题和斐波那契数列1.兔子问题1)问题——取自意大利数学家斐波那契的《算盘书》(1202年)(L.Fibonacci,1170-1250)72.斐波那契生平斐波那契(Fibonacci.L,1175—1250)出生于意大利的比萨。他小时候就对算术很有兴趣。后来,他父亲带他旅行到埃及、叙利亚、希腊(拜占庭)、西西里和普罗旺斯,他又接触到东方国家的数学。斐波那契确信印度—阿拉伯计算方法在实用上的优越性。1202年,在回到家里不久,他发表了著名的《算盘书》。8斐波那契的才能受到弗里德里希二世的重视,因而被邀请到宫廷参加数学竞赛。他还曾向官吏和市民讲授计算方法。他的最重要的成果在不定分析和数论方面,除了《算盘书》外,保存下来的还有《实用几何》等四部著作。9六、斐波那契协会和《斐波那契季刊》1.斐波那契协会和《斐波那契季刊》斐波那契1202年在《算盘书》中从兔子问题得到斐波那契数列1,1,2,3,5,8,13,…之后,并没有进一步探讨此序列,并且在19世纪初以前,也没有人认真研究过它。没想到过了几百年之后,十九世纪末和二十世纪,这一问题派生出广泛的应用,从而突然活跃起来,成为热门的研究课题。10有人比喻说,“有关斐波那契数列的论文,甚至比斐波那契的兔子增长得还快”,以致1963年成立了斐波那契协会,还出版了《斐波那契季刊》。11兔子问题假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每月会生一对兔子,那么,由一对初生兔子开始,12个月后会有多少对兔子呢?12解答1月1对13解答1月1对2月1对14解答1月1对2月1对3月2对15解答1月1对2月1对3月2对4月3对16解答1月1对2月1对3月2对4月3对5月5对17解答1月1对2月1对3月2对4月3对5月5对6月8对18解答1月1对2月1对3月2对4月3对5月5对6月8对7月13对19解答可以将结果以列表形式给出:1月2月3月5月4月6月7月8月9月11月10月12月1123581321345589144因此,斐波那契问题的答案是144对。以上数列,即“斐波那契数列”20兔子问题的另外一种提法:第一个月是一对大兔子,类似繁殖;到第十二个月时,共有多少对兔子?月份ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ大兔对数1123581321345589144小兔对数01123581321345589到十二月时有大兔子144对,小兔子89对,共有兔子144+89=233对。规律212.斐波那契数列1)公式用表示第个月大兔子的对数,则有二阶递推公式nF12121,3,4,5nnnFFFFFnn222)斐波那契数列令n=1,2,3,…依次写出数列,就是1,1,2,3,5,8,13,21,34,55,89,144,233,377,…这就是斐波那契数列。其中的任一个数,都叫斐波那契数。23二、相关的问题斐波那契数列是从兔子问题中抽象出来的,如果它在其它方面没有应用,它就不会有强大的生命力。发人深省的是,斐波那契数列确实在许多问题中出现。241.跳格游戏25如图,一个人站在“梯子格”的起点处向上跳,从格外只能进入第1格,从格中,每次可向上跳一格或两格,问:可以用多少种方法,跳到第n格?解:设跳到第n格的方法有种。由于他跳入第1格,只有一种方法;跳入第2格,必须先跳入第1格,所以也只有一种方法,从而nt121tt26而能一次跳入第n格的,只有第和第两格,因此,跳入第格的方法数,是跳入第格的方法数,加上跳入第格的方法数之和。即。综合得递推公式容易算出,跳格数列就是斐波那契数列1,1,2,3,5,8,13,21,34,…1n2n1nt2n2nt12nnnttt12121(3,4,5,)nnntttttnnnt1n273.蜜蜂进蜂房问题:一次蜜蜂从蜂房A出发,想爬到、、……、n号蜂房,只允许它自左向右(不许反方向倒走)。则它爬到各号蜂房的路线多少?空空空空空空1357246nn-2n-1…………283.自然界中的斐波那契数斐波那契数列中的任一个数,都叫斐波那契数。...