电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题VIP免费

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第1页
1/6
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第2页
2/6
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第3页
3/6
1.1分类加法计数原理与分步乘法计数原理课时过关·能力提升基础巩固1某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.30解析:共有5+3=8种不同的选法.答案:A2(a1+a2)(b1+b2)(c1+c2+c3)完全展开后的项数为()A.9B.12C.18D.24解析:由分步乘法计数原理得,完全展开后的项数为2×2×3=12.答案:B3从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种解析:种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选2种种植有3×2=6种不同种法.由分步乘法原理知共有3×6=18种不同的种植方法.故选B.答案:B4如图,一条电路从A处到B处接通时,可构成线路的条数为()A.8B.6C.5D.3解析:从A处到B处的电路接通可分两步,第一步:前一个并联电路接通有2条线路,第二步:后一个并联电路接通有3条线路;由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为3×2=6,故选B.答案:B5已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示出的不同直线的条数为()A.19B.20C.21D.22解析:当A或B中有一个为零时,则可表示出2条不同的直线;当AB≠0时,A有5种选法,B有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线.答案:D6将4位老师分配到3个学校去任教,共有分配方案()A.81种B.12种C.7种D.256种解析:每位老师都有3种分配方案,分四步完成,故共有3×3×3×3=81种分配方案.答案:A17五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有()A.60种B.40种C.20种D.10种解析:设五名护士分别为A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10种情况,假设A,B两人拿到自己的外衣,则C,D,E三人不能拿到自己的外衣,则只有C取D,D取E,E取C,或C取E,D取C,E取D两种情况.故根据分步乘法计数原理,应有10×2=20种情况.答案:C8若在登录某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位分别为0到9这10个数字中的一个,第二位和第四位分别为a到z这26个英文字母中的一个,则这样的验证码共有.解析:完成这件事可分四步:第一步,确定验证码的第一位,共有10种方法;第二步,确定验证码的第二位,共有26种方法;第三步,确定验证码的第三位,共有10种方法;第四步,确定验证码的第四位,共有26种方法.由分步乘法计数原理可得,这样的验证码共有10×26×10×26=67600个.答案:67600个9如图,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为.解析:由题图可知,从A到B有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,由分类加法计数原理得,单位时间内传递的最大信息量为3+4+6+6=19.答案:1910某城市的电话号码,由七位升为八位(首位数字均不为零),则该城市可增加的电话部数是.解析:由题意知本题是一个分步计数问题,电话号码是七位数字时,该城市可安装电话9×106部,同理升为八位时为9×107.所以可增加的电话部数是9×107-9×106=81×106=8.1×107.答案:8.1×10711在某运动会的百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙3人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙3人,共有1,3,5,7四条跑道可安排.所以安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120种.所以安排这8人的方式有24×120=2880种.答案:2880212有一项活动,需从3位老师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,则有多少种不同的选法?(2)若需老师、男同学、女同学各1人参加,则有多少种不同的选法?(3)若需1位老师、1名...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部