第三章综合素质检测时间120分钟,满分150分。一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.把红桃、黑桃、方块、梅花四张纸牌随机发给甲、乙、丙、丁四个人,每人分得一“”“”张,事件甲分得梅花与事件乙分得梅花是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案均不对[答案]C[解析]根据互斥事件和对立事件的定义,由题设易知两事件互斥但不对立.2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下事件:①两球都不是白球;②两球中恰有一白球;③两球中至少有一个白球.“”其中与事件两球都为白球互斥而非对立的事件是()A.①②B.①③C.②③D.①②③[答案]A[解析]从口袋内一次取出2个球,当事件A“”两球都为白球发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件;而A发生时,③可以发生,故不是互斥事件.3.下面是古典概型的是()A.任意抛掷两枚骰子,所得点数之和作为基本事件时B.为求任意的一个正整数平方的个位数字是1的概率,将正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币至首次出现正面为止[答案]C[解析]抛掷两枚骰子,所得点数之和为2,3,4…,,12中的任意一个,但它们不是等可能出现的,故以所得点数之和作为基本事件,不是古典概型;求任意一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件,有无穷多个,故不是古典概型;从甲地到乙地共n条路线,选任一条路线都是等可能的,而最短路线只有一条,其概率为是古典概型;抛掷一枚均匀硬币至首次出现正面为止,基本事件空间不确定.4.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是()A.B.C.D.[答案]C[解析]将正品编号为1,2,3,4,次品编号为5,所有可能取法构成集合Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共10种,其中两件都是正品的取法有6种,∴概率P==.5.袋中装有白球和黑球各3个,从中任取2个,则至多有一黑球的概率是()A.B.C.D.[答案]B[解析]从袋中任取2个球,有15种等可能取法(不妨将黑球编号为黑1、黑2、黑3,将白球编号为白1、白2、白3).取出的两个球都是白球有3种等可能取法,取出的两个球,一白一黑有9种等可能取法,∴事件A“=取出的两个球至多1”黑,共有9+3=12种取法,∴P(A)==.[点评]“”“”至多一黑的对立事件为两个都是黑球故可用对立事件求解.6.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1、P2、P3,则()A.P1=P2