2.9《有理数的乘方》教学设计教学目标:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、能确定有理数加、减、乘、除、乘方混合运算的顺序;4、会进行有理数的混合运算;5、培养并提高正确迅速的运算能力.教学重点:有理数乘方的意义;运算顺序的确定和性质符号的处理.教学难点:幂、底数、指数的概念及其表示;有理数的混合运算.教学过程:一、学前准备1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包.他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!学生交流讨论并计算,如果把整块面包看成整体“1”,那第十天他将吃到面包.2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条?二、合作探究我们学过正方形的面积公式,知道边长为a的正方形面积为a•a;我们还知道棱长为a的正方体的体积是a•a•a.a•a可简记为a2,读作a的平方(或二次方).a•a•a可简记为a3,读作a的立方(或三次方).一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.接下来引入乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂;在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂;当指数是1时,通常省略不写.三、新知应用1、将下列各式写成乘方(即幂)的形式:1)(−2.3)×(−2.3)×(−2.3)×(−2.3)×(−2.3)=.(−2.3)52)(−)×(−)×(−)×(−)=.(−)43)x•x•x•……•x(2008个)=.x20082、计算:1)(−3)42)(−)33)(−5)34)()2从上题中你能发现什么规律?归纳:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何次幂都是0.3、思考:(−2)4和−24意义一样吗?为什么?4、混合运算:在2+32×(−6)这个式子中,存在着种运算.(三种,加、乘、乘方)学生小组讨论、交流,上面这个式子应该先算、再算、最后算.教师总结,在有理数的混合运算中,运算顺序是:1)、先算乘方,再算乘除,最后算加减;2)、同级运算,从左到右进行;3)、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.四、小结1、有理数乘方的意义;2、幂、底数、指数的概念及其表示;3、有理数的混合运算顺序.