第一章算法初步1.3算法案例例:求下面两个正整数的最大公约数:(1)求25和35的最大公约数(2)求49和63的最大公约数25(1)5535749(2)77639所以,25和35的最大公约数为5所以,49和63的最大公约数为7思考:除了用这种方法外还有没有其它方法?例:如何算出8251和6105的最大公约数?辗转相除法与更相减损术一、辗转相除法(欧几里得算法)1、定义:所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。2、步骤(以求8251和6105的最大公约数的过程为例)第一步用两数中较大的数除以较小的数,求得商和余数8251=6105×1+2146结论:8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步对6105和2146重复第一步的做法6105=2146×2+1813同理6105和2146的最大公约数也是2146和1813的最大公约数。完整的过程8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例:用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数显然45是90和45的最大公约数,也就是225和135的最大公约数思考:从上面的两个例子中可以看出计算的规律是什么?S1:用大数除以小数S2:除数变成被除数,余数变成除数S3:重复S1,直到余数为0辗转相除法是一个反复执行直到余数等于0才停止的步骤,这实际上是一个循环结构。m=n×q+r用程序框图表示出右边的过程r=mMODnm=nn=rr=0?是否8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0思考:辗转相除法中的关键步骤是哪种逻辑结构?程序框图:开始输入m,nr=mMODnm=nr=0?是否n=r输出m结束思考:你能把辗转相除法编成一个计算机程序吗?程序:INPUT“m,n=”;m,nDOr=mMODnm=nn=rLOOPUNTILr=0PRINTmEND1.定义:所谓更相减损术,就是对于给定的两个数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,再用较大的数减去较小的数,反复执行此步骤直到差数和较小的数相等,此时相等的两数便为原来两个数的最大公约数。二、更相减损术2、方法:例:用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于7INPUTm,nIFmnIFd>nTHENm=dELSEm=nn=dENDIFd=m-nWENDd=2k*dPRINTdEND思考:你能根据更相减损术设计程序,求两个正整数的最大公约数吗?(1)设计求多项式763452)(2345xxxxxxf当x=5时的值的算法,并写出程序。(2)有没有更高效的算法?能否探求更好的算法,来解决任意多项式的求解问题?三、秦九韶算法三、秦九韶算法引导学生把多项式变形为:7)6)3)4)52((((763452)(2345xxxxxxxxxxxf思考:从内到外,如果把每一个括号都看成一个常数,那么变形后“”的式子中有哪些一次式?x的系数依次是什么?(3)若将x的值代入变形后的式子中,那么求值的计算过程是怎样的?将变形前x的系数乘以x的值,加上变形前的第2个系数,得到一个新的系数;将此系数继续乘以x的值,再加上变形前的第3个系数,又得到一个新的系数;继续对新系数做上面的变换,直到与变形前的最后一个系数相加,得到一个新的系数为止。这个系数即为所求多项式的值。这种算法即是“秦九韶算法”(4)用秦九韶算法求多项式的值,与多项式组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算?计算只与多项式的计算只与多项式的系数有关,系数有关,《数书九章》——秦九韶算法0111)(axaxaxaxfnnnn设)(xf是一个n次的多项式对该多项式按下面的方式进行改写:0111)(axaxaxaxfnnnn01211)(axaxaxannnn...