博弈论 博弈论--这是一个热得烫手的概念。它不仅仅存在于数学的运筹学中,也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者),但如果你认为博弈论的应用领域仅限于此的话,那你就大错了。实际上,博弈论甚至在我们的工作和生活中无处不在!在工作中,你在和上司博弈,也在和下属博弈,你也同样会跟其他相关部门人员博弈;而要开展业务,你更是在和你的客户以及竞争对手博弈。在生活中,博弈仍然无处不在。博弈论代表着一种全新的分析方法和全新的思想。 诺贝尔经济学奖获得者包罗·萨缪尔逊如是说: 要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解。 也可以这样说,要相赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。 下面是关于博弈的一些小故事 一、 囚徒困境 两个夜贼,鲍伯(Bob)和艾尔(Al),在行窃现场附近被抓获并被警方隔离拷问。每个夜贼都必须选择是否坦白和揭发对方。如果两个贼都不坦白,他们都将被判刑一年。如果每个贼都坦白并揭发对方,他们都将在监狱中度过 10 年。但是,如果一个贼坦白并揭发对方,而另一个贼不坦白,那么与警方合作的贼将被释放而另一个贼将在监狱中度过 20 年。 在这个例子中的战略是:坦白与不坦白。赢利(pay off)(实际上是处罚)是判刑。我们可以用“赢利表(pay off table) ”简洁地表达上述信息,这类赢利表已经成为博弈论中很好的标准表达式。以下是囚徒困境博弈的赢利表。 表 2-1 艾尔 坦白 不坦白 鲍伯 坦白 10,10 0,20 不坦白 20,0 1,1 这个表的读法是这样的:每个囚犯从两个战略中选择一个。即,艾尔选择一列,鲍伯选择一行。每个单元格的两个数字告诉两个囚犯相应的战略被选择后的结果。逗号左边的数字表示选择行的人(鲍伯)的赢利,逗号右边的数字表示选择列的人(艾尔)的赢利。因此(先阅读第一列),如果他们都选择坦白,每人将判刑 10 年,但是如果艾尔坦白而鲍伯不坦白,鲍伯被判 20 年而艾尔将被释放。 那么:怎样求解这个博弈?如果双方都想使自己呆在监狱的时间最短,他们选择什么战略是“理性的”?艾尔可能会做这样的推理:“两种事件可能发生:鲍伯要么坦白要么保持沉默。假定鲍伯坦白,我不坦白的话将被判 20 年,我也坦白的话则判 10 年。另一方面,如果鲍伯不坦白,我不坦白我被判刑 1 年,但在这种情况下,如果我坦白我可以被释放。无论怎样,我选择坦白都是最好的。...