对迈克尔逊干涉实验的分析与讨论 1 绪论 迈克尔逊干涉仪是1883年在美物理学家迈克尔逊和莫雷合作为研究“以太”漂移而设计创造出来的精密仪器。它利用分振幅法产生双光束以实现干涉。迈克尔逊与其合作者用此仪器进行了三项著名实验:即迈克尔逊-莫雷实验,实验结果否定了“以太”的存在,为相对论的提出奠定了实验基础;随后将干涉仪用于光谱的精密结构的研究;利用光谱线的波长,标定标准米尺等工作,为近代物理和近代计算技术做出了重要贡献。 在实验中我们发现,用迈克尔逊干涉仪的点光源非定域干涉测氦氖激光的波长时,其值总是偏大。本文通过对某些实验现象进行分析,找出了测量值偏大的原因是在某些区间里干涉条纹并不是严格的等倾干涉条纹。由此本文通过公式运算与对实验现象的分析,找出了用迈克尔逊干涉仪测氦氖激光波长的最佳区间,并用实验数据进行了应证。在以后的实验中,我们可以在此区间里进行测量,从而减小实验误差。 笔者发现,在大多数物理实验教科书中,对如何减小实验误差大都进行了罗列与叙述,但大多是从实验仪器与实验者等方面寻找问题,很少有人提及在实验中存在最佳测量区间这一问题。笔者在实验中发现了一些异常现象,通过对象的分析,发现存在着最佳测量区间。 对迈克尔逊干涉实验的分析与讨论 2 对迈克尔逊干涉实验的分析与讨论 1 引言 1881年迈克尔逊(Michelson,1852-1931)制成可以测定微小长度、折射率和光波波长的第一台干涉仪。后来,他又用干涉仪做了3个闻名于世的重要实验:迈克尔逊-莫雷(Morley,1838-1923)“以太”漂移实验,实验结果否定了“以太”的存在,解决了当时关于“以太”的争论,并确定光速为定值,为爱因斯坦(Einstein,1879-1955)发现相对论提供了实验依据;迈克尔逊与莫雷最早用干涉仪观察到氢原子光谱中巴耳末系的第一线为双线结构,并以次推断光谱线的精确结构;迈克尔逊首次用干涉仪测得镉红线波长(λ =643.84696nm),并用此波长测定了标准米的长度(1m=1553164.13镉红线波长)。此外迈克尔逊于1920年用一台高分辨率的干涉仪测量猎户星座等变光星的直径约为太阳直径的3倍,这是人类首次精确测量太阳之外的恒星的大小。 迈克尔逊干涉仪在近代物理和近代计量技术中起了重要作用。今天迈克尔逊干涉仪已被更完善的现代干涉仪取代,但它的基本结构仍然是许多现代干涉仪的基础。 2 实验原理 理想情况下的迈克尔逊干涉仪光路如图1所示,G1 的半透膜将入射光束分成振幅相等的两...