鸡兔同笼”问题中的数学思想方法及其渗透策略“鸡兔同笼”问题是我国古代数学名著《孙子算经》中记载的一道数学趣题,是《人教版义务教育课程标准实验教科书•数学》六年级上册第七单元“数学广角”中的教学内容。教材虽然只编排了一道例题,但此例在解决“鸡兔同笼”问题时,先后呈现了多种不同的解决问题的策略。这些策略的背后究竟隐含着哪些重要的数学思想方法,又该如何向学生有效渗透这些重要的数学思想方法?对此,遵循新课程的目标,按照新课标的要求,结合新教材的特点,都颇具探究价值。一、解决“鸡兔同笼”问题策略中蕴涵的数学思想方法数学思想是对数学知识和方法的本质及规律的理性认识,数学方法则是数学思想的具体表现形式,数学思想和数学方法合在一起,称为数学思想方法。解决问题的策略是以一定的数学思想方法为指导,在特定问题情境中,为实现教学目标而制定并在实施过程中不断调适、优化,以使问题得以有效解决的最佳系统决策与设计。在解决“鸡兔同笼”问题的过程中所使用的不同的解决问题的策略背后,一定隐含了相应的数学思想方法。笔者从中挖掘出的以下数学思想方法,对于教师提高对数学思想方法的认识能力和渗透意识都十分必要。1.转化的思想方法教材首先将《孙子算经》中的原题:“笼子里有若干只鸡和兔。从上面数,有 35 个头,从下面数,有 94 只脚。鸡和兔各有几只?”通过小精灵的提示:“我们可以先从简单的问题入手。”转化成了例题:“笼子里有若干只鸡和兔。从上面数,有 8 个头,从下面数,有 26 只脚。鸡和兔各有几只?”同样是基本的“鸡兔同笼”问题,其中数量由大到小的变化,既为分析和解决问题提供了方便,也巧妙渗透了转化的数学思想方法。转化是指将有待解决的问题,归结为一类已经解决或较易解决的问题中去,以求得问题的解决。教学中常常用到的化“难”为“易”,化“繁”为“简”,化“生”为“熟”,化“数”为“形”,化“曲”为“直”,化“圆”为“方”等都是数学学习中不可缺少的转化的思想方法。2.猜想的思想方法让学生先根据例题中的“从上面数,有 8 个头。”大胆猜测“鸡和兔各有几只?”再根据“从下面数,有 26 只脚。”来小心求证。在猜想不正确的情况下,学生逐步感受到“如果总脚数猜多了,就要多猜鸡少猜兔的只数;如果总脚数猜少了,要多猜兔少猜鸡的只数。”也正是在这样的过程中,学生参与探究的热情更高了,开展探究的勇气更大了,解决问题的思路更明了。美籍匈...