电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮专题复习 周周练 第二周 函数与导数 理-人教版高三数学试题VIP免费

高考数学二轮专题复习 周周练 第二周 函数与导数 理-人教版高三数学试题_第1页
1/2
高考数学二轮专题复习 周周练 第二周 函数与导数 理-人教版高三数学试题_第2页
2/2
星期四(函数与导数)2016年____月____日函数与导数知识(命题意图:考查含参函数的单调区间的求解,考查应用导数解决方程解的个数问题以及不等式恒成立问题等.)已知函数f(x)=ex+mx-2,g(x)=mx+lnx.(1)求函数f(x)的单调区间;(2)当m=-1时,试推断方程|g(x)|=+是否有实数解;(3)证明:在区间(0,+∞)上,函数y=f(x)的图象恒在函数y=g(x)的图象的上方.(1)解由题意可得:f′(x)=ex+m.当m≥0时,f′(x)>0,所以当m≥0时,函数f(x)的单调增区间为(-∞,+∞).当m<0时,令f′(x)>0,即ex+m>0,可得x>ln(-m);令f′(x)<0,即ex+m<0,可得x<ln(-m).所以当m<0时,函数f(x)的单调增区间为[ln(-m),+∞),单调减区间为(-∞,ln(-m)].(2)解当m=-1时,g(x)=-x+lnx(x>0),易得g′(x)=-1.令g′(x)>0,可得0<x<1,令g′(x)<0,可得x>1.故g(x)在x=1处取得极大值,亦即最大值.即g(x)≤g(1)=-1,∴|g(x)|≥1.令h(x)=+,所以h′(x)=.令h′(x)>0,可得0<x<e,令h′(x)<0,可得x>e,故h(x)在x=e取得极大值,亦即最大值.∴h(x)≤h(e)=+<1.所以方程|g(x)|=+无实数解.(3)证明由题意可知本题即证:当x∈(0,+∞)时,f(x)>g(x)恒成立.令F(x)=f(x)-g(x)=ex-lnx-2(x>0),则F′(x)=ex-=.令H(x)=xex-1,则H′(x)=ex+xex=ex(x+1).又x∈(0,+∞),∴H′(x)>0,∴函数H(x)在(0,+∞)上单调递增.∴H(0)=-1.又H(1)=e-1>0,设x0为函数H(x)的零点,则x0∈(0,1),即H(x0)=x0ex0-1=0,即x0ex0=1,∴x0==e-x0,ex0=,∴当x∈(0,x0)时,H(x)<0,即x∈(0,x0)时,函数F(x)单调递减,当x∈(x0,+∞)时,H(x)>0,即x∈(x0,+∞)时,函数F(x)单调递增.∴x0为函数F(x)的极小值点,亦即最小值点,∴F(x)≥F(x0)=ex0-lnx0-2=+x0-2>2-2=0,∴F(x)>0,即x∈(0,+∞)时,f(x)>g(x),∴原题得证.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮专题复习 周周练 第二周 函数与导数 理-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部