21.2.1配方法解一元二次方程(第2课时)一、学习目标:1、理解解一元二次方程的“降次”——转化的数学思想,并能应用它解决一些具体问题;2、会用配方法解一元二次方程;3、理解运用转化的思想解决数学问题.二、学习重难点:重点:用配方法解一元二次方程难点:理解运用转化的思想解决数学问题.探究案三、合作探究问题:要使一块长方形场地的长比宽多6m,并且面积为16m²,场地的长与宽各是多少?分析题中关系,请列出方程:如何解这个方程?议一议(1)二次项系数不是1时,怎么办?(2)配方过程中,在等式两边加上的常数与一次项系数的关系如何?(3)配方过程中,若等号右边为负数,这个方程有没有实数根?(4)配方过程中还需注意哪些问题等等.最后师生共同评析,加深用配方法解一元二次方程的理解.归纳总结:1、配方法解一元二次方程的定义:2、配方法解一元二次方程的一般步骤:活动内容2:例题精讲例题1:接下列方程:(1)x²-8x+1=0(2)2x²+1=3x(3)3x²-6x+4=0(4)课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获__________________________________________________________________________________________________________________________________________________________随堂检测1.方程x2+6x-5=0的左边配成完全平方后所得方程为().(A)(x+3)2=14(B)(x-3)2=14(C)(x+6)2=14(D)以上答案都不对2.用配方法解下列方程,配方有错的是()(A)x2-2x-99=0化为(x-1)2=100(B)2x2-3x-2=0化为(x-3/4)2=25/16(C)x2+8x+9=0化为(x+4)2=25(D)3x2-4x=2化为(x-2/3)2=10/93.若实数x、y满足(x+y+2)(x+y-1)=0,则x+y的值为().(A)1(B)-2(C)2或-1(D)-2或14.对于任意的实数x,代数式x2-5x+10的值是一个()(A)非负数(B)正数(C)整数(D)不能确定的数5.下列各题中的括号内应填入怎样的数合适?(1)x²-3x+()=(x-)²;(2)x²++()=(x+)²。6.解下列方程:(1)x²+10x+3=0;(2)x²-3x+1=0;;.参考答案随堂检测1.A2.C3.D4.B5.(1)(2)6.(1)x1=,x2=;(2)x1=,x2=;(3)x1=,x2=;(4);