第二十一章一元二次方程21.3实际问题与一元二次方程第3课时几何图形与一元二次方程学习目标:1.掌握面积法建立一元二次方程的数学模型.(难点)2.能运用一元二次方程解决与面积有关的实际问题.(重点)重点:运用一元二次方程解决与面积有关的实际问题.难点:掌握面积法建立一元二次方程的数学模型.一、知识链接用长为60m的篱笆围一个矩形的菜园.宽AD为xm.用含x的代数式填空:(1)如图①,AB=_________m,S矩形ABCD=___________;(2)如图②,菜园中间用一根篱笆隔开,则AB=_________m,S矩形ABCD=___________;(3)如图③,菜园一面靠墙,中间用一根篱笆隔开,则AB=_________m,S矩形ABCD=______.图①图②图③二、要点探究探究点:几何图形与一元二次方程探究1要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)方法点拨:几何图形与一元二次方程主要集中在几何图形的面积问题,这类问题的面积公式是等量关系.如果图形不规则应割或补成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程.典例精析例1如图,在一块宽为20m,长为32m的矩形地面上修筑同样宽的两条道路,余下的部分种上草坪,要自主学习课堂探究DABC使草坪的面积为540m2,求道路的宽为多少?【变式题1】在宽为20m,长为32m的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m2,则这种方案下的道路的宽为多少?【变式题2】在宽为20m,长为32m的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m2,则这种方案下的道路的宽为多少?【变式题3】在宽为20m,长为32m的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m2,则这种方案下的道路的宽为多少?【变式题4】在宽为20m,长为32m的矩形地面上修筑四条道路,余下的部分种上草坪,如果横、纵小路的宽度比为3∶2,且使小路所占面积是矩形面积的四分之一,则道路的宽为多少?方法点拨:我们利用“图形经过移动,它的面积大小不会改变”的性质,把纵、横两条路移动一下,使列方程容易些(目的是求出水渠的宽,至于实际施工,仍可按原图的位置修路).例2如图,要利用一面墙(墙足够长)建羊圈,用58m的围栏围成总面积为200m2的三个大小相同的矩形羊圈,则羊圈的边长AB和BC的长各是多少米?【变式题1】如图,要利用一面墙(墙长为25m)建羊圈,用80m的围栏围成面积为600m2的矩形羊圈,则羊圈的边长AB和BC的长各是多少米?【变式题2】如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80平方米?方法点拨:围墙问题一般先设其中的一条边为x,根据周长等条件把另一边用x表示出来,最后根据面积公式列方程求解.需要注意联系实际问题选择合适的解.三、课堂小结几何图形与一元二次方程问题几何图形常见几何图形面积是等量关系类型课本封面问题常采用图形平移能聚零为整方便列方程彩条/小路宽度问题动点面积问题1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=02.一块长方形铁板,长是宽的2倍,如果在4个角上截去边长为5cm的小正方形,然后把四边折起来,做成一个没有盖的盒子,盒子的容积是3000cm3,求铁板的长和宽.当堂检测3.如图,要设计一个宽20cm,长为30cm的矩形图案,其中有两横两竖彩条,横竖彩条的宽度之比为2∶3,若使所有彩条的面积是原来矩形图案面积的三分之一,应如何设计每个彩条的宽度?4.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm.点P沿AC边从点A向终点C以1cm/s的速度移动;同时点Q沿CB边从点C向终点B以2cm/s的速度移动,且当其中一点到达终点时,另一点也随之停止移...