核心素养测评五十四抛物线(25分钟50分)一、选择题(每小题5分,共35分)1.(2020·汉中模拟)动点P到点A(0,2)的距离比它到直线l:y=-4的距离小2,则动点P的轨迹方程为()A.y2=4xB.y2=8xC.x2=4yD.x2=8y【解析】选D.因为动点P到点A(0,2)的距离比它到直线l:y=-4的距离小2,所以动点P到点A(0,2)的距离与它到直线y=-2的距离相等.由抛物线的定义得点P的轨迹为以A(0,2)为焦点,直线y=-2为准线的抛物线,其标准方程为x2=8y.2.已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=3,则直线AF的斜率为()A.B.-C.D.-【解析】选B.如图,抛物线y2=4x的焦点为F(1,0),由|PF|=3,得|PA|=3,则xP=2,代入y2=4x,得yP=2.所以A(-1,2),所以kAF==-.3.(2020·聊城模拟)已知抛物线C:y2=4x的焦点F和准线l,过点F的直线交l于点A,与抛物线的一个交点为B,且=3,则|AB|=()A.B.C.D.【解析】选C.由抛物线方程y2=4x,知焦点F(1,0),准线l:x=-1,如图,设l与x轴交点为K,过B作BM⊥l,交l于M,则易知BM∥KF,所以△ABM∽△AFK,设|BF|=m,由=3,可知|AB|=2m,所以|KF|=|AF|=m,又由方程知|KF|=2,所以m=2,即m=,所以|AB|=2m=.4.(2020·上饶模拟)已知点F是抛物线x2=4y的焦点,点P为抛物线上的任意一点,M(1,2)为平面上一点,则|PM|+|PF|的最小值为()A.3B.2C.4D.2【解析】选A.抛物线标准方程为x2=4y,即p=2,故焦点F(0,1),准线方程y=-1,过P作PA垂直于准线,垂足为A,过M作MA0垂直于准线,垂足为A0,交抛物线于P0,则|PM|+|PF|=|PA|+|PM|≥|A0M|=3(当且仅当P与P0重合时取等号).5.已知抛物线x2=ay与直线y=2x-2相交于M,N两点,若MN中点的横坐标为3,则此抛物线方程为()A.x2=yB.x2=6yC.x2=-3yD.x2=3y【解析】选D.设点M(x1,y1),N(x2,y2).由消去y得x2-2ax+2a=0,所以==3,即a=3,所以所求的抛物线方程是x2=3y.6.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p的值为()A.1B.2C.3D.4【解析】选D.F,0,那么M4-,4在抛物线上,即16=2p4-,即p2-8p+16=0,解得p=4.7.在直角坐标系xOy中,抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若∠NFR=60°,则|NR|=()世纪金榜导学号A.2B.C.2D.3【解析】选A.根据题意,如图所示:连接MF,QF,抛物线的方程为y2=4x,其焦点为F(1,0),准线为x=-1,则|FH|=2,由抛物线定义可得|PF|=|PQ|,由PQ⊥l,得:PQ∥FR,所以∠QPF=∠NFR,又∠NFR=60°,所以∠QPF=60°,所以△PQF为等边三角形,由M,N分别为PQ,PF的中点,得|MN|=|QF|,MN∥QF,且MF⊥PQ,又QH⊥PQ,QM∥HF,故四边形HFMQ为矩形,故|QM|=|HF|=2,又在Rt△QMF中,|QF|===4,故|MN|=|QF|=2,又PQ∥RF,|PN|=|NF|,所以|NR|=|MN|=2.二、填空题(每小题5分,共15分)8.已知点P(-3,3),过点M(3,0)作直线,与抛物线y2=4x相交于A,B两点,设直线PA,PB的斜率分别为k1,k2,则k1+k2=.【解析】设过点M的直线为x=my+3,联立抛物线方程可得y2-4my-12=0,设A,B,可得y1+y2=4m,y1y2=-12,则k1+k2=+=+=+=+=-1.答案:-19.已知抛物线x2=4y焦点为F,经过F的直线交抛物线于A(x1,y1),B(x2,y2)两点,点A,B在抛物线准线上的射影分别为A1,B1,以下四个结论:①x1x2=-4,②|AB|=y1+y2+1,③∠A1FB1=,④AB的中点到抛物线的准线的距离的最小值为2.其中正确的是.【解析】抛物线x2=4y焦点为F(0,1),易知直线AB的斜率存在,设直线AB的方程为y=kx+1.由得x2-4kx-4=0,则x1+x2=4k,x1x2=-4,①正确;|AB|=|AF|+|BF|=y1+1+y2+1=y1+y2+2,②不正确;=(x1,-2),=(x2,-2),所以·=x1x2+4=0,所以⊥,∠A1FB1=,③正确;AB的中点到抛物线的准线的距离d=(|AA1|+|BB1|)=(y1+y2+2)=(kx1+1+kx2+1+2)=(4k2+4)≥2.当k=0时取得最小值2,④正确.答案:①③④10.(2020·保定模拟)已知抛物线y2=2px(p>0)经过点M(1,2),直线l与抛物线交于相异两点A,B,若△MAB的内切圆圆心为(1,t),则直线l的斜率为.世纪金榜导学号【解析】将点M(1,2)代入y2=2px,可得p=2,所以抛物线方程为y2=4x,由题意知,直线l斜率存在且不为0,设直线l的方程为x=my+n(m≠0),代入y2=4x,得y2-4my-4n=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4n,又由△MAB的内切圆圆心为(1,t),可得kMA+kMB=+=+=0,整理得y1+y2+4=4m+4=0,解得m=-1,从而l的方程为y...