下载后可任意编辑高一年级数学课程教学设计高一年级数学课程教学设计1一、教学目标:1.通过高速公路上的实际例子,引起积极的思考和沟通,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.培育广泛联想的能力和热爱数学的态度.二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点:培育广泛联想的能力和热爱数学的态度三、教学方法:探究沟通法四、教学过程(一)、知识探究:阅读课文P25页。实例分析:书上在高速公路情境下的问题。在高速公路情景下,你能发现哪些函数关系?2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?下载后可任意编辑问题小结:1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,假如一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。(二)、新课探究——函数概念1.初中关于函数的定义:2.从集合的观点出发,函数定义:给定两个非空数集A和B,假如根据某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。定义域,值域,对应法则4.函数值当x=a时,我们用f(a)表示函数y=f(x)的函数值。下载后可任意编辑高一年级数学课程教学设计2一、教学过程1.复习反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。求出函数y=x3的反函数。2.新课先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声因为他们得到了如下的图象:老师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。生2:这是y=x3的反函数y=的图象。师:对,但是怎么会得到这个图象,请大家讨论。(学生展开讨论,但找不出原因。)师:我们请生1再给大家演示一下,大家帮他找找原因。(生1将他的制作过程重新重复了一次。)生3:问题出在他选择的次序不对。师:哪个次序?生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不下载后可任意编辑是(xA,xA3)。师:是这样吗?我们请生1再做一次。(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采纳了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?(学生再次陷入思考,一会儿有学生举手。)师:我们请生4来告诉大家。生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。师:完全正确。下面我们进一步讨论y=x3的图象及其反函数y=的图象的关系,同学们能不能看出这两个函数的图象有什么样的关系?(多数学生回答可由y=x3的图象得到y=的图象,于是老师进一步追问。)师:怎么由y=x3的图象得到y=的图象?生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。师:将横坐标与纵坐标互换?怎么换?(学生一时未能明白老师的意思,场面一下子冷了下来,下载后可任意编辑老师不得不将问题进一步明确。)师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?(学生重新开始观察这两个函数的图象,一会儿有学生举手。)生6:我发现这两个图象应是关于某条直线对称。师:能说说是关于哪条直线对称吗?生6:我还没找出来。(接下来,老师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,...