专题六电磁感应【知识网络】【方法整合】电磁感应规律的综合应用类问题不仅涉及法拉第电磁感应定律,还涉及力学、静电场、电路、磁场等知识。电磁感应的综合题有两类基本类型:一是电磁感应与电路、电场的综合;二是电磁感应与磁场、导体的受力和运动的综合。也有这两种基本类型的复合题,题中电磁现象与力现象相互联系、相互影响、相互制约,其基本形式如下:【重点、热点透析】(一)楞次定律的理解和应用在用楞次定律解决电磁感应的有关问题时,要注意以下四点:(1)阻碍原磁通量的变化或原磁场的变化,可用做分析感应电流的方向和受力及面积扩大或缩小的趋势,理解为“增反减同”。(2)阻碍相对运动。理解为“来拒去留”,可用做分析受力及运动方向。(3)表示为“延缓”磁通量的变化。(4)线圈运动方向的判定。线圈在磁场中产生感应电流而受到磁场对它的作用引起线圈运动。利用等效性(通电线圈与条形磁铁等效)和阻碍特点确定线圈受力。【例1】如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸里看,线框ab将()A.保持静止不动B.逆时针转动C.顺时针转动D.发生转动,但电源极性不明,无法确定转动方向点评:真正理解了楞次定律中的“阻碍”的含义之后,就没有必要按部就班的进行磁通量的方向、大小的判断,而只需要从运动的角度考虑就可以了。(二)电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路相当于电源。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法如下:(1)确定电源:首先明确产生电磁感应的电路就是等效电源;其次利用或E=BLv求感应电动势的大小;再利用右手定则或愣次定律判断感应电流的方向.(2)正确分析电路的结构,画出等效电路图.(3)利用闭合电路欧姆定律、串并联电路的性质、电功率等公式联立求解.【例2】如图所示,在倾角为300的光滑斜面上固定一光滑金属导轨CDEFG,OH∥CD∥FG,∠DEF=600,.一根质量为m的导体棒AB在电机牵引下,以恒定速度v0沿OH方向从斜面底端开始运动,滑上导轨并到达斜面顶端,AB⊥OH.金属导轨的CD、FG段电阻不计,DEF段与AB棒材料与横截面积均相同,单位长度的电阻为r,O是AB棒的中点,整个斜面处在垂直斜面向上磁感应强度为B的匀强磁场中.求:(1)导体棒在导轨上滑动时电路中电流的大小;(2)导体棒运动到DF位置时AB两端的电压.方法总结:解决电磁感应电路问题的关键是借鉴或利用相似原形来启发理解和变换物理模型,即把‘电磁感应电路问题等效转换成稳恒直流电路.把产生感应电动势的那部分等效为内电路,感应电动势的大小相当于电源电动势;其余部分相当于外电路,并画出等效电路图。此时,处理问题的方法与闭合电路求解基本一致.(三)电磁感应中的动力学问题电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,因此,电磁感应问题往往和力学、运动学等问题联系在一起。电磁感应中动力学问题的解题思路如下:【例3】如图所示,abcd为质量M=2kg的导轨,放在光滑绝缘的水平面上,另有一根重量m=0.6kg的金属棒PQ平行于bc放在水平导轨上,PQ棒左边靠着绝缘的竖直立柱ef(竖直立柱光滑,且固定不动),导轨处于匀强磁场中,磁场以cd为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度B大小都为0.8T.导轨的bc段长L=0.5m,其电阻r=0.4Ω,金属棒PQ的电阻R=0.2Ω,其余电阻均可不计.金属棒与导轨间的动摩擦因数=0.2.若在导轨上作用一个方向向左、大小为F=2N的水平拉力,设导轨足够长,重力加速度g取10m/s2,试求:(1)导轨运动的最大加速度;(2)导轨的最大速度;(3)定性画出回路中感应电流随时间变化的图线.方法总结:解决这类问题的思路是:联系两者的桥梁是磁场对感应电流的安培力.解决此类问题时,正确分析受力是关键,解题时要分清物体的状态是处于平衡状态还是动态变化。(四)电磁感应中的能量问题电磁感应的过程是的能的转化和守恒的过程,导体切割磁感线或磁通量发生变化在回路中产生感应电流,机械能或其他形式的能便转化为...