专题突破练26不等式选讲(选修4—5)1.(2018全国卷2,23)设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.2.已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.3.(2018云南昆明二模,23)已知函数f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)≤x的解集;(2)当x≥时,f(x)+x2>1,求实数a的取值范围.4.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)
-1,且当x∈时,f(x)≤g(x),求a的取值范围.5.(2018广西三模,23)已知函数f(x)=|x-1|+|x+1|-2.(1)求不等式f(x)≥1的解集;(2)若关于x的不等式f(x)≥a2-a-2在R上恒成立,求实数a的取值范围.6.(2018河北唐山三模,23)已知函数f(x)=|x-1|-|2x-3|.(1)求不等式f(x)≥0的解集;(2)设g(x)=f(x)+f(-x),求g(x)的最大值.7.(2018河南郑州三模,23)已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.8.(2018山东潍坊一模,23)设函数f(x)=|ax+1|+|x-a|(a>0),g(x)=x2+x.(1)当a=1时,求不等式g(x)≥f(x)的解集;(2)已知f(x)≥,求a的取值范围.参考答案专题突破练26不等式选讲(选修4—5)1.解(1)当a=1时,f(x)=可得f(x)≥0的解集为{x|-2≤x≤3}.(2)f(x)≤1等价于|x+a|+|x-2|≥4.而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4.由|a+2|≥4可得a≤-6或a≥2.所以a的取值范围是(-∞,-6]∪[2,+∞).2.证明(1)(a+b)(a5+b5)=a6+ab5+a5b+b6=(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4.(2)因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+(a+b)=2+,当a=b时取等号,所以(a+b)3≤8,因此a+b≤2.3.解(1)当a=1时,不等式f(x)≤x,即为|x+1|-|x-1|≤x,等价于解得-2≤x≤-1或-11⇔|ax-1|1时,x2+x≥2x,x2-x≥0,∴x≥1或x≤0,此时x>1,∴不等式的解集为{x|x≤-3或x≥1}.(2)f(x)=|ax+1|+|x-a|=若01,则f(x)min=f-=a+>2>,∴a>1.综上所述,a≥.