电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

复合函数单调性VIP免费

复合函数单调性_第1页
1/3
复合函数单调性_第2页
2/3
复合函数单调性_第3页
3/3
复合函数的概念及复合函数的单调性一、知识点内容和要求:理解复合函数的概念,会求复合函数的单调区间二、教学过程设计(一)复习函数的单调性引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何?(二)新课1、复合函数的概念如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。例如:函数是由复合而成立。函数是由复合而成立,a是中间变量。2、复合函数单调性由引例:对任意a,都有意义(a>0且a≠1)且。对任意,当a>1时,单调递增,当0<a<1时,单调递减。∵当a>1时,∵y=f(u)是上的递减函数∴∴∴是单调递减函数类似地,当0<a<1时,是单调递增函数一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况:(1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;1(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。例1、讨论函数的单调性(1)(2)解:①又是减函数∴函数的增区间是(-∞,2],减区间是[2,+∞)。②x∈(-1,3)令∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。∵是增函数∴函数在(-1,1]上单调递增,在(1,3)上单调递减。注意:要求定义域练习:求下列函数的单调区间。1、(1)减区间,增区间;(3)减区间,增区间;(4)减区间,增函数。2、已知求g(x)的单调区间。2提示:设,则g(x)=f(u)利用复合函数单调性解决:g(x)的单调递增区间分别为(-∞,-1],[0,1],单调递减区间分别为[-1,0],[1,+∞)。例3、确定函数的单调区间。提示,先求定义域:(-∞,0),(0,+∞),再由奇函数,先考虑(0,+∞)上单调性,并分情况讨论。函数的递增区间分别为(-∞,-1],[0,+∞)函数的递减区间分别为[-1,0),(0,1]。作业:1、求下列函数的单调区间。2、求函数的递减区间。3、讨论下列函数的单调性。(1)答案:1(1)递减区间(2)递增区间(0,+∞)(3)递减区间(-∞,0]递增区间[2,+∞)2、[,2]3、(-∞,-2)4、(1)在上是增函数,在上是减函数;(2)a>1时,在(-∞,1)上是减函数,在(3,+∞)上是增函数;3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

复合函数单调性

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部