§1离散型随机变量及其分布列自主整理1.随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个_____________.2.随机变量的取值能够_____________的随机变量称为离散型随机变量.3.设离散型随机变量X的取值为a1,a2,…,随机变量X取ai的概率为pi(i=1,2,…),记作p(X=ai)=Pi(i=1,2,…)或把上式列成表X=aia1a2…P(X=ai)p1p2…称为__________________________________________________________________________。并且有①pi_____________0,②p1+p2+…=_____________.如果随机变量X的分布列如上表,则称随机变量X服从这一分布(列),并记为_____________.高手笔记1.随机变量是将随机试验的结果数量化.2.随机变量的取值对应于随机试验的某一随机事件.3.随机变量X取每一个值ai的概率P(X=ai)等于其相应的随机事件Ai发生的概率P(Ai).4.若X为一个随机变量,则Y=aX+b(a,b为常数)也为随机变量.5.离散型随机变量的分布列中第一行表述了随机变量X的所有可能的取值,在这里要注意按一定的次序来填写;第二行表述了随机变量X取相应上行中数值ai的概率的大小pi=P(X=ai),i=1,2,…6.一般地,离散型随机变量在某一范围内取值的概率等于其在这个范围内取每一个值的概率之和.7.离散型随机变量的分布列不仅清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值的概率大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究随机试验数量特征的基础.名师解惑1.随机变量与以前学过的变量有什么区别与联系?剖析:随机变量作为一个变量,当然有它的取值范围,这和以前学过的变量一样.不仅如此,还有它取每个值的可能性的大小,如:从装有无差别的6只黑球、4只白球的袋中,随机抽取3只球,所得的白球个数是一随机变量X,其取值为X=0,1,2,3;而取每个值的可能性的大小,可通过其相应的随机事件发生的大小——即其概率来反映.即“若X=2”,对应事件A2:“取出的3只球中恰有两只白球”,其概率:P(A2)=若“X=3”对应事件A3:“取出的3只球中恰有三只白球”的概率:P(A3)=1所以随机变量X=2的可能性大小为,而X=3的可能性大小为.综上,随机变量X不仅有它的取值范围{x1,x2,…,xn,…},而且还有取每个值的可能性大小——概率P(X=xi),i=1,2,…,n,…,这是与通常的变量所不同的.2.常见的离散型随机变量的分布列有哪些?剖析:(1)单点分布:它的分布列为XCP1(2)两点分布:它的分布列为X01Pqp其中0