电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(浙江专用)高考数学一轮复习 9.2 导数在研究函数中的应用 理-人教版高三全册数学试题VIP免费

(浙江专用)高考数学一轮复习 9.2 导数在研究函数中的应用 理-人教版高三全册数学试题_第1页
1/6
(浙江专用)高考数学一轮复习 9.2 导数在研究函数中的应用 理-人教版高三全册数学试题_第2页
2/6
(浙江专用)高考数学一轮复习 9.2 导数在研究函数中的应用 理-人教版高三全册数学试题_第3页
3/6
第2讲导数在研究函数中的应用基础巩固题组(建议用时:40分钟)一、选择题1.(2015·九江模拟)函数f(x)=(x-3)ex的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)解析函数f(x)=(x-3)ex的导数为f′(x)=[(x-3)ex]′=ex+(x-3)ex=(x-2)ex.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)ex>0,解得x>2.答案D2.函数y=xex的最小值是()A.-1B.-eC.-D.不存在解析y′=ex+xex=(1+x)ex,令y′=0,则x=-1,因为x<-1时,y′<0,x>-1时,y′>0,所以x=-1时,ymin=-.答案C3.(2013·浙江卷)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()解析由y=f′(x)的图象知,y=f(x)的图象为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.答案B14.设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则()A.a<-1B.a>-1C.a>-D.a<-解析 y=ex+ax,∴y′=ex+a. 函数y=ex+ax有大于零的极值点,则方程y′=ex+a=0有大于零的解, x>0时,-ex<-1,∴a=-ex<-1.答案A5.(2014·青岛模拟)已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(-1,2)B.(-∞,-3)∪(6,+∞)C.(-3,6)D.(-∞,-1)∪(2,+∞)解析 f′(x)=3x2+2ax+(a+6),由已知可得f′(x)=0有两个不相等的实根,∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0.∴a>6或a<-3.答案B二、填空题6.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=________.解析由题意,得f′(x)=3x2-12,令f′(x)=0,得x=±2,又f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,M-m=32.答案327.(2015·广州模拟)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b=________.解析由题意得f′(x)=3x2+6ax+b,则解得或经检验当a=1,b=3时,函数f(x)在x=-1处无法取得极值,而a=2,b=9满足题意,故a-b=-7.答案-78.若函数f(x)=-x3+x2+2ax在上存在单调递增区间,则a的取值范围是________.解析对f(x)求导,得f′(x)=-x2+x+2a=-2++2a.当x∈时,f′(x)的最大值为f′=+2a.令+2a>0,解得a>-.所以a的取值范围是.答案三、解答题9.(2014·湘潭检测)已知函数f(x)=-x3+ax2+bx+c在点P(1,f(1))处的切线方程为y=-3x+1.(1)若函数f(x)在x=-2时有极值,求f(x)的解析式;(2)函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.2解f′(x)=-3x2+2ax+b,函数f(x)在x=1处的切线斜率为-3,所以f′(1)=-3+2a+b=-3,即2a+b=0,又f(1)=-1+a+b+c=-2得a+b+c=-1.(1)函数f(x)在x=-2时有极值,所以f′(-2)=-12-4a+b=0,解得a=-2,b=4,c=-3,所以f(x)=-x3-2x2+4x-3.(2)因为函数f(x)在区间[-2,0]上单调递增,所以导函数f′(x)=-3x2-bx+b在区间[-2,0]上的值恒大于或等于零,则得b≥4,所以实数b的取值范围是[4,+∞).10.(2014·安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解(1)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2.令f′(x)=0,得x1=,x2=,x1<x2,所以f′(x)=-3(x-x1)(x-x2).当x<x1或x>x2时,f′(x)<0;当x1<x<x2时,f′(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在(x1,x2)内单调递增.(2)因为a>0,所以x1<0,x2>0.①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,所以f(x)在x=x2=处取得最大值.又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0处和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值.能力提升题组(建议用时:35分钟)11.函数f(x)=x3-3x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(浙江专用)高考数学一轮复习 9.2 导数在研究函数中的应用 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部