河北省张家口一中高二数学选修 2-3 2.3 离散型随机变量的均值 教案教学目标(1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义;(2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题.教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义.一、复习回顾1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量. 随机变量常用希腊字母 ξ、η 等表示.2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量. 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是 离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结 果不可以一一列出. 5. 分布列: 设离散型随机变量 ξ 可能取得值为 x1,x2,…,x3,…,ξ 取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量 ξ 的概率分布,简称 ξ 的分布列6.分布列的两个性质: ⑴ Pi≥0,i=1,2,…; ⑵ P1+P2+…=1.7.二项分布:ξ~B(n,p),并记knkknqpC =b(k;n,p).ξ01…k…nPnnqpC00111nnqpC…knkknqpC…0qpCnnn8.几何分布: g(k,p)= 1kqp,其中 k=0,1,2,…, pq1.ξ123…k…Pppq2q p…1kqp…二、教学过程一.问题情境1.情景:前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产件产品所出的不合格品数分 别用表示,的概率分布如下.用心 爱心 专心12.问题: 如何比较甲、乙两个工人的技术?二.学生活动1. 直接比较两个人生产件产品时所出的废品数.从分布列来看,甲出件废品的概率比乙大,似乎甲的技术比乙好;但甲出件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论.2.联想到“平均数”,,如何计算甲和乙出的废品的“平 均数”?3.让学生回顾《数学 3(必修)》中样本的平均值的计算方法.三.建构数学1.定义: 在《数学 3(必修)》“统计”一章中,我们曾用公式计算样本的平均值,其中...