1.2.2组合(第一课时)教学目标:1.理解组合的意义,掌握组合数的计算公式;2.能正确认识组合与排列的联系与区别教学重点:理解组合的意义,掌握组合数的计算公式教学过程一、复习引入:1.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列奎屯王新敞新疆说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同奎屯王新敞新疆2.排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示奎屯王新敞新疆注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数奎屯王新敞新疆所以符号mnA只表示排列数,而不表示具体的排列奎屯王新敞新疆3.排列数公式及其推导:(1)(2)(1)mnAnnnnm(,,mnNmn)全排列数:(1)(2)21!nnAnnnn(叫做n的阶乘)奎屯王新敞新疆二、讲解新课:11奎屯王新敞新疆组合的概念:一般地,从n个不同元素中取出mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合奎屯王新敞新疆说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同奎屯王新敞新疆2.组合数的概念:从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号mnC表示.3.组合数公式的推导:(1)一般地,求从n个不同元素中取出m个元素的排列数mnA,可以分如下两步:①先求从n个不同元素中取出m个元素的组合数mnC;②求每一个组合中m个元素全排列数mmA,根据1分步计数原理得:mnA=mnCmmA.(2)组合数的公式:(1)(2)(1)!mmnnmmAnnnnmCAm或)!(!!mnmnCmn),,(nmNmn且奎屯王新敞新疆例子:1、计算:(1)47C;(2)710C;(1)解:4776544!C=35;(2)解法1:710109876547!C=120.解法2:71010!10987!3!3!C=120.2、求证:11mnmnCmnmC.证明:∵)!(!!mnmnCmn111!(1)!(1)!mnmmnCnmnmmnm=1!(1)!()(1)!mnmnmnm=!!()!nmnm∴11mnmnCmnmC3、在52件产品中,有50件合格品,2件次品,从中任取5件进行检查.(1)全是合格品的抽法有多少种?(2)次品全被抽出的抽法有多少种?(3)恰有一件次品被抽出的抽法有多少种?(4)至少有一件次品被抽出的抽法有多少种?4、名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C,1624CC,2614CC,所以,一共有34C+1624CC+2614CC=100种方法.解法二:(间接法)10036310CC奎屯王新敞新疆课堂小节:本节课学习了组合的意义,组合数的计算公式课堂练习:2课后作业:3