(三)函数与导数(1)1.已知函数f(x)=x2+(x≠0,a∈R).(1)判断函数f(x)的奇偶性,并说明理由;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解(1)当a=0时,f(x)=x2,对任意x∈(-∞,0)∪(0,+∞),f(-x)=(-x)2=x2=f(x),∴f(x)为偶函数.当a≠0时,f(x)=x2+(a≠0,x≠0),令x=-1,得f(-1)=1-a.令x=1,得f(1)=1+a.∴f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0,∴f(-1)≠-f(1),f(-1)≠f(1).∴函数f(x)既不是奇函数,也不是偶函数.综上,当a=0时,f(x)为偶函数;当a≠0时,f(x)既不是奇函数,也不是偶函数.(2)若函数f(x)在[2,+∞)上为增函数,则f′(x)≥0在[2,+∞)上恒成立,即2x-≥0在[2,+∞)上恒成立,即a≤2x3在[2,+∞)上恒成立,只需a≤(2x3)min,x∈[2,+∞),∴a≤16,∴a的取值范围是(-∞,16].2.(2016·课标全国乙)已知函数f(x)=(x-2)ex+a(x-1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).(ⅰ)设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.(ⅱ)设a<0,由f′(x)=0得x=1或x=ln(-2a).①若a=-,则f′(x)=(x-1)(ex-e),所以f(x)在(-∞,+∞)上单调递增.②若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x∈(ln(-2a),1)时,f′(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减.③若a<-,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(1,ln(-2a))时,f′(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,在(1,ln(-2a))上单调递减.(2)(ⅰ)设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b(b-2)+a(b-1)2=a>0,所以f(x)有两个零点.(ⅱ)设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.(ⅲ)设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点.综上,a的取值范围为(0,+∞).3.(2016·山东)设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.解(1)由f′(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞),所以g′(x)=-2a=.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈时,g′(x)>0,函数g(x)单调递增,x∈时,g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为,单调减区间为.(2)由(1)知,f′(1)=0.①当a≤0时,f′(x)单调递增,所以当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f′(x)在内单调递增.可得当x∈(0,1)时,f′(x)<0,当x∈时,f′(x)>0.所以f(x)在(0,1)内单调递减,在内单调递增.所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)在x=1处取得极大值,符合题意.综上可知,实数a的取值范围为a>.4.已知函数f(x)=alnx-x+.(1)判断函数f(x)的单调性;(2)证明:当x>0时,ln(1+)<.(1)解f′(x)=-1-=(x>0).记g(x)=-x2+ax-1,对称轴为x=,Δ=a2-4,而g(0)=-1<0,且开口方向向下,则①当Δ=a2-4≤0,即-2≤a≤2时,g(x)≤0,f′(x)≤0,∴f(x)在(0,+∞)上单调递减.②当Δ=a2-4>0,即a>2或a<-2时,若a>2,则>1,方程g(x)=0的两根x1...