【步步高】(江苏专用)2017版高考数学一轮复习第十章计数原理10.2排列与组合理1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合并成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示.3.排列数、组合数的公式及性质公式(1)A=n(n-1)(n-2)…(n-m+1)=(2)C===性质(1)0!=1;A=n!(2)C=C;C=C+C__【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)一个组合中取出的元素讲究元素的先后顺序.(×)(3)两个组合相同的充要条件是其中的元素完全相同.(√)(4)(n+1)!-n!=n·n!.(√)(5)A=nA.(√)(6)kC=nC.(√)1.(教材改编)用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为________.答案48解析末位数字排法有A种,其他位置排法有A种,共有AA=48种.12.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.答案10解析方法一不同的赠送方法有=10种.方法二从2本同样的画册,3本同样的集邮册中取出4本有两种取法:第一种:从2本画册中取出1本,将3本集邮册全部取出;第二种:将2本画册全部取出,从3本集邮册中取出2本.由于画册是相同的,集邮册也是相同的,因此第一种取法中只需从4位朋友中选出1人赠送画册,其余的赠送集邮册,有C=4种赠送方法;第二种取法中只需从4位朋友中选取2人赠送画册,其余的赠送集邮册,有C=6种赠送方法.因此共有4+6=10种赠送方法.3.(2014·辽宁改编)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.答案24解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A=4×3×2=24.4.(教材改编)从4名男同学和3名女同学中选出3名参加某项活动,其中男女生都有的选法种数为________.答案30解析分两类:男1女2或男2女1,各有CC和CC种方法,所以选法种数为CC+CC=12+18=30.也可用间接法C-C-C=30.5.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度要启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法的种数是________.答案60解析从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,所有的选法种数是C×C=90.重点项目A和一般项目B都没有被选中的选法种数是C×C=30,故重点项目A和一般项目B至少有一个被选中的不同选法种数是90-30=60.题型一排列问题例1(1)3名男生,4名女生,选其中5人排成一排,则有________种不同的排法.(2)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种.答案(1)2520(2)480解析(1)问题即为从7个元素中选出5个全排列,有A=2520种排法.(2)从左往右看,若C排在第1位,共有A=120种排法;若C排在第2位,A和B有C右边的4个位置可以选,共有A·A=72种排法;若C排在第3位,则A,B可排C的左侧或右侧,共有A·A+A·A=48种排法;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有2×(120+72+48)=480种排法.引申探究1.本例(1)中将条件“5人排成一排”改为“排成前后两排,前排3人,后排4人”,其他条件不变,则有多少种不同的排法?解前排3人,后排4人,相当于排成一排,共有A=5040种排法.22.本例(1)中将条件“5人排成一排”改为“全体站成一排,男、女各站在一起”,其他条件不变,则有多少种不同的排法?解相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A种排法;女生必须站在一起,是女生的全排列,有A种排法;全体男生、女生各视为一个元素,有A种排法,根据分步计数原理,共有A·A·A=288种排法.3.本例(1)中将条件“5人排成一排”改为“全体站成一排,男生不能站在一起”,其他条件不变,则有多少种不同的排法?解不相邻问题(插空法):先安排女生共有A种排法,男生在4个女生隔...