第六章 平行四边形4. 多边形的内角和与外角和(二)西安市高新一中初中校区 邹国胜一、学生起点分析在上一节的学习中,学生已经掌握了多边形的内角和公式,对如何探究内角和的问题有了一定的认识,加之八年级学生的好奇心、求知欲强,互相评价、互相提问的积极性高.因此对于学习本节内容的知识条件已经成熟,学生也具备了参加探索活动的热情,所以考虑把这节课设计成一节探索活动课.二、学任务分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”, “议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.教学目标【知识与技能】 经历探索多边形的外角和公式的过程;会应用公式解决问题;【过程与方法】 培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.教学重难点【教学重点】多边形外角和定理的探索和应用.【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.三、教学过程设计本节课分成 6 个环节:ABCDEA'B'C'D'E'12345O第一环节:创设情境,引入新课;第二环节:问题解决;第三环节:多边形的外角和外角和;第四环节:巩固练习;第五环节:课时小结;第六环节:布置作业。第一环节 创设情境,引入新课问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+ ∠3+ ∠4+∠5 的结果吗?你是怎样得到的?目的:利用生活情境,设计问题,激发学生的兴趣和积极性,同时给学生一定的思考空间。第二环节 问题解决 对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的...