考点一求三角函数的解析式1.(2015·陕西,3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10解析由题干图易得ymin=k-3=2,则k=5.∴ymax=k+3=8.答案C2.(2015·新课标全国Ⅰ,8)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z解析由图象知=-=1,∴T=2.由选项知D正确.答案D3.(2013·湖南,17)已知函数f(x)=sin+cos,g(x)=2sin2.(1)若α是第一象限角,且f(α)=,求g(α)的值;(2)求使f(x)≥g(x)成立的x的取值集合.解f(x)=sin+cos=sinx-cosx+cosx+sinx=sinx,g(x)=2sin2=1-cosx.(1)由f(α)=得sinα=.又α是第一象限角,所以cosα>0.从而g(α)=1-cosα=1-=1-=.(2)f(x)≥g(x)等价于sinx≥1-cosx,即sinx+cosx≥1.于是sin≥.从而2kπ+≤x+≤2kπ+,k∈Z,即2kπ≤x≤2kπ+,k∈Z.故使f(x)≥g(x)成立的x的取值集合为{x|2kπ≤x≤2kπ+,k∈Z}.4.(2012·四川,18)函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈,求f(x0+1)的值.解(1)由已知可得,f(x)=3cosωx+sinωx=2sin.又正三角形ABC的高为2,从而BC=4.所以函数f(x)的周期T=4×2=8,即=8,ω=.函数f(x)的值域为[-2,2].(2)因为f(x0)=,由(1)有f(x0)=2sin=,即sin=.由x0∈,知+∈,所以cos==.故f(x0+1)=2sin=2sin=2=2=.5.(2015·湖北,17)“”某同学用五点法画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxAsin(ωx+φ)05-50(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解(1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:ωx+φ0π2πxπAsin(ωx+φ)050-50且函数表达式为f(x)=5sin.(2)由(1)知f(x)=5sin,得g(x)=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ-=kπ,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点成中心对称,令+-θ=,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.6.(2011·福建,16)已知等比数列{an}的公比q=3,前3项和S3=.(1)求数列{an}的通项公式;(2)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=处取得最大值,且最大值为a3,求函数f(x)的解析式.解(1)由q=3,S3=,得=,解得a1=.所以an=×3n-1=3n-2.(2)由(1)可知an=3n-2,所以a3=3.因为函数f(x)的最大值为3,所以A=3.因为当x=时f(x)取得最大值,所以sin=1.又0<φ<π,故φ=.所以函数f(x)的解析式为f(x)=3sin.考点二函数y=Asin(ωx+φ)的综合应用1.(2015·安徽,10)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)0,∴φmin=,故f(x)=Asin.于是f(0)=A,f(2)=Asin,f(-2)=Asin=Asin,又 -<-4<<4-<,其中f(2)=Asin=Asin=Asin,f(-2)=Asin=Asin=Asin.又f(x)在单调递增,∴f(2)