函数的基本性质【考纲要求】1.理解常数函数、一次函数、二次函数、反比例函数的概念、图象与性质。2.幂函数(1)了解幂函数的概念.(2)结合函数的图象,了解它们的图象的变化情况.【知识网络】【考点梳理】考点一、初中学过的函数(一)函数的图象与性质常 函 数一次函数反比例函数二次函数表达式()()() ()式子中字母的含义及范围限定图象、及其与坐标轴的关系单 调 性要点诠释:1.过原点的直线的方程,图象,性质;2.函数的最高次项的系数能否为零。(二)二次函数的最值1.二次函数有以下三种解析式:一般式:(),基 本 初 等 函 数图象与性质一次函数二次函数幂函数常数函数顶点式:(),其中顶点为,对称轴为直线,零点式:(),其中是方程的根2. 二次函数()在区间上的最值:二次函数()在区间上的最大值为 M,最小值为 m,令. (1) (2) (3) (4)(1)若,则,;(2)若,则,;(3)若,则,;(4)若,则,.要点诠释:1.二次函数的最值只可能在三处取得:两个区间端点以及顶点的函数值;2. 求二次函数的最值一般要数形结合。考点二、幂的运算 (1),,;(2),,。考点三、幂函数的图象与性质1.幂函数在第一象限的图象特征2.幂函数性质: (1),图象过(0,0)、(1,1),下凸递增,如;(2),图象过(0,0)、(1,1),上凸递增,如;(3),图象过(1,1),单调递减,且以两坐标轴为渐近线,如要点诠释:幂函数在第四象限没有图象,其它象限的图象可以由奇偶性确定。【典型例题】类型一:基本函数的解析式问题例 1.已知二次函数满足,且图像在轴上截距为 1,在轴截得的线段长为,求的解析式.【解析】用待定系数法求,选择适当的二次函数的形式。方法一:设(),则,且对称轴,即,∴, , ∴∴方法二: ,∴二次函数的图象的对称轴为,可设所求函数为(), 截轴上的弦长为, ∴的图像过点和,∴,即 (1)又 的图像过点, ∴ (2)(1)(2)联立,解得,,∴,即.方法三: 的图象对称轴, 又,∴与轴的交点为和,故可设(),由可得 . ∴,即.【总结升华】二次函数的形式有以下三种:(1)一般形式:(),(2)顶点式(或称配方式)(),(3)零点式(或称双根式)(),(前提:有根)对一个具体二次函数,三种形式的系数都具有具体的意义,在分析具体问题时,要充分挖掘题目的隐含条件及充分利用图形的直观性去简化运算,简捷处理问题。举一反三:【变式】已知二次函数...