4.6用尺规作线段与角【学习目标】1.了解尺规作图的概念和意义.2.会用尺规作一条线段等于已知线段,会用尺规作一个角等于已知角,并了解它们在尺规作图中的简单应用.【学习重点】会用尺规作线段与角.【学习难点】作线段与角的和、差、倍数.行为提示:创设情境,引导学生探究新知.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.提示:先作一条直线,在这条直线上连续作出三条线段都等于a即可.方法指导:作图痕迹是尺规作图必不可少的部分,不可擦去.情景导入生成问题旧知回顾:1.什么是角的平分线?答:在角的内部、以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做角的平分线.2.什么样的两个角互补?什么样的两个角互余?答:两个角的和为一个平角,这两个角互为补角,简称互补;两个角的和为一个直角,这两个角互为余角,简称互余.3.补(余)角的性质是什么?答:同角(或等角)的补角相等;同角(或等角)的余角相等.自学互研生成能力阅读教材P153~P154的内容,回答下列问题:问题:什么是尺规作图?答:几何中,通常用没有刻度的直尺和圆规来画图,这种画图方法叫做尺规作图.典例1:已知线段a,如图:.求作:线段AB,使AB=3a.解:作法:(1)作射线AE;(2)在射线AE上顺次截取AC=CD=DB=a,则线段AB即为所求作的线段.典例2:如图,已知∠α和∠β(∠α>∠β),求作∠AOB,使∠AOB=∠α-∠β.解:(1)作射线OA;(2)以射线OA为一边作∠AOC=∠α;(3)以O为顶点,以射线OC为一边,在∠AOC的内部作∠BOC=∠β,则∠AOB就是所求作的角.仿例1:如图,已知线段a、b、c,用圆规和直尺画线段,使它等于2a+b-c.解:作法:(1)作射线AF;(2)在射线AF上顺次截取AB=BC=a,CD=b;(3)在线段AD上截取DE=c.所以线段AE即为所求.说明:对于比较复杂的尺规作图,可先画出草图,找到正确作图方法.知识链接:仿例3在直线AB上找一点C,要注意点C在AB之间或AB延长线上两种情况.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.仿例2:已知:如图,锐角∠AOB,求作:∠β,使得∠β=180°-2∠AOB.解:作法:(1)作∠A′O′B′=∠AOB;(2)以O′B′为始边作∠B′O′C′=∠AOB;(3)反向延长射线O′A′到D′,∠β为图中所示的∠C′O′D′.仿例3:如图,在直线AB上找出一点C,使AC=2CB,则C点应在(D)A.点A、B之间B.点A的左边C.点B的右边D.点A、B之间或点B的右边仿例4:已知线段a,b(a>b),画一条线段,使它等于2a-b.画法:(1)画射线AE;(2)在射线AE上顺次截取AB=BD=a;(3)在线段AD上截取CD=b,线段AC即为所求作的线段.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块尺规作图课后反思查漏补缺1.收获:________________________________________________________________________2.困惑:________________________________________________________________________