2.2一元二次方程的解法(一)【教学目标】◆1.理解开平方法解一元二次方程的依据是平方根的意义.◆2.会用开平方法解一元二次方程.◆3.理解配方法.◆4.会用配方法解二次项系数为1的一元二次方程.【教学重点与难点】◆教学重点:开平方法.◆教学难点:配方法有一个比较复杂的过程,无论从理解和运用上,对学生来说都有一定的难度.【教学手段】用多媒体powerpoint和黑板的形式。【教学过程】(一)引入新课问题1:在修建甬(宁波)金(金华)高速公路时,遇到高山,需要开掘隧道,为了预计这座山隧道的长度,工程人员测量了山的高度约AB=3千米,坡面的长度约AC=5千米。请你估算开掘这座山的隧道约有多少千米?从甬金高速公路入手引出型的一元二次方程,体现方程与几何图形性质的应用,对一元二次方程概念的理解、方程根的检验等起着复习巩固的作用。(二)由问题1可得即再利用因式分解法得出方程的根。如果把变形为,进而可以理解为x是16的平方根,引出求这种方程的根可以用两边直接开方的方法进行,再得出开平方法的概念。通过让学生观察体会得出开平方法的两个特征:1、它适合于什么样的方程?(左边是一个关于x的完全平方,右边为一个非负常数即)。2:用什么样的方法来解?(方程的两边直接开平方的方法)然后通过一系列、连续的例题来巩固用开平方法解一元二次方程,既突出本节课的重点,又比较自然的过渡到用配方法解一元二次方程。例1、(1)(2)(3)(4)通过第4个例题的讲解学生已经了解到,如果左边不是一个直接的完全平方,那么通过观察、变形,把它配成完全平方,就可以用开平方法来解一元二次方程。(三)、问题2:把方程变形:左边是一个含有x的式子的完全平方,而右边是一个非负数。1:先移项:含有未知数的项移到左边,含有常数的项移到右边。2:方程两边同加上一个合适的数。3:左边是一个完全平方,右边是一个非负常数。4:最后用开平方法来解即可引出配方法的概念。像这样,把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法。然后让学生回答:用配方法解一元二次方程关键在哪里?(就是如何在方程左、右两边同加上一个合适的数使左边配成一个完全平方。)为了弄清楚在方程的左右两边究竟应加上一个什么样的合适的数,可以通过专门的3个练习来得出。即突破本节课的难点。(1)(2)(3)最后让学生得出结论:1:加上一次项系数一半的平方;2:前提条件:二次项系数为1例2、(1)(2)再次总结:形如(二次项系数为1时),可以用配方法来解一元二次方程。具体的步骤有:第一:移项。第二:等式两边同加上一次项系数一半的平方。第三:再用开平方法来解方程。(四)提出挑战题:当二次项系数不是1时,怎么办?为下节课的教学打下了基础。例3、一、课堂小结让学生回答1:用开平方法、配方法解一元二次方程的概念。2:用这两种方法解方程时,方程的特点。3:用这两种方法解方程时的步骤。4:让学生回答在解方程过程中应注意的事项。六、布置作业。2.2一元二次方程和解法(二)【教学目标】◆1.巩固用配方法解一元二次方程的基本步骤.◆2.会用配方法解二次项系数的绝对值不为1的一元二次方程.【教学重点与难点】◆教学重点:用配方法解二次项的系数的绝对值不是1的一元二次方程.◆教学难点:当二次项系数为小数或分数时,用配方法解一元二次方程.【教学过程】一.复习旧知用适当的方法解下列方程:1、(x-2)2=32、x2+3x+1=0请学生上来板演,老师点评归纳。二.新课讲授1.出示引例:用配方法解方程5x2=10x+1提出问题:当一元二次方程的二次项系数的绝对值不是1时,怎样用配方法来解?经学生讨论后,指定一名学生(中等程度)回答。教师总结:对于二次项系数的绝对值不是1的一元二次方程,只要将方程的两边都除以二次项系数,就转化为我们已经能解决的问题。即用配方法解二次项系数是1的一元二次方程。2.讲解例题例3:用配方法解下列一元二次方程(1)2x2+4x-3=0(2)3x2-8x-3=0评注(1)本例讲解可由上一课时的复习来引入,先给出方程x2+2x-1=0,让学生解答,并板书过程,同时解答方程3x2+6x-3=0,让学生作比较,学生容易发现,两个方...