阶段自测卷(五)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·贵州遵义航天中学月考)下列说法正确的是()A.空间中,两不重合的平面若有公共点,则这些点一定在一条直线上B.空间中,三角形、四边形都一定是平面图形C.空间中,正方体、长方体、四面体都是四棱柱D.用一平面去截棱锥,底面与截面之间的部分所形成的多面体叫棱台答案A解析空间四边形不是平面图形,故B错;四面体不是四棱柱,故C错;平行于底面的平面去截棱锥,底面和截面之间的部分所形成的多面体才叫棱台,故D错;根据公理2可知A正确,故选A.2.(2019·湛江调研)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.α∩β=n,m⊂α,m∥β⇒m∥nB.α⊥β,α∩β=m,m⊥n⇒n⊥βC.m⊥n,m⊂α,n⊂β⇒α⊥βD.m∥α,n⊂α⇒m∥n答案A解析对于A,根据线面平行的性质定理可得A选项正确;对于B,当α⊥β,α∩β=m时,若n⊥m,n⊂α,则n⊥β,但题目中无条件n⊂α,故B不一定成立;对于C,若m⊥n,m⊂α,n⊂β,则α与β相交或平行,故C错误;对于D,若m∥α,n⊂α,则m与n平行或异面,则D错误,故选A.3.(2019·重庆万州三中月考)如图,在三棱柱ABC-A1B1C1中,D是CC1的中点,F是A1B的中点,且DF=αAB+βAC,则()A.α=,β=-1B.α=-,β=1C.α=1,β=-D.α=-1,β=答案A解析根据向量加法的多边形法则以及已知可得,DF=DC+CB+BF=C1C+CB+BA1=A1A+AB-AC+BA+AA1=AB-AC,∴α=,β=-1,故选A.4.平行六面体ABCD-A1B1C1D1中,AB=(1,2,0),AD=(2,1,0),CC1=(0,1,5),则对角线AC1的边长为()A.4B.4C.5D.12答案C解析因为AC1=AA1+A1B1+B1C1=CC1+AB+AD=(0,1,5)+(1,2,0)+(2,1,0)=(3,4,5),所以|AC1|==5,故选C.5.(2019·凉山诊断)如图,在四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,下列结论中,正确的是()A.EF⊥BB1B.EF⊥平面BCC1B1C.EF∥平面D1BCD.EF∥平面ACC1A1答案D解析连接B1C交BC1于F,由于四边形BCC1B1是平行四边形,对角线互相平分,故F是B1C的中点.因为E是AB1的中点,所以EF是△B1AC的中位线,故EF∥AC,所以EF∥平面ACC1A1.故选D.6.(2019·湖北黄冈中学、华师附中等八校联考)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V,求球的直径d的公式d=.若球的半径为r=1,根据“开立圆术”的方法计算该球的体积为()A.πB.C.D.答案D解析根据公式d=得,2=,解得V=.故选D.7.已知棱长为2的正方体ABCD-A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B.C.D.答案D解析因为球与各面相切,所以直径为2,且AC,AB1,CB1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为的正三角形的外接圆,由正弦定理知,R=,所以截面的面积S=,故选D.8.已知向量n=(2,0,1)为平面α的法向量,点A(-1,2,1)在α内,则P(1,2,-2)到α的距离为()A.B.C.2D.答案A解析 PA=(-2,0,3),∴点P到平面α的距离为d===.∴P(1,2,-2)到α的距离为.故选A.9.正方体ABCD-A1B1C1D1中,点P在A1C上运动(包括端点),则BP与AD1所成角的取值范围是()A.B.C.D.答案D解析以点D为原点,DA,DC,DD1分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,设点P坐标为(0≤x≤1),则BP=,BC1=,设BP,BC1的夹角为α,所以cosα===,所以当x=时,cosα取得最大值,α=.当x=1时,cosα取得最小值,α=.因为BC1∥AD1.故选D.10.(2019·淄博期中)在直三棱柱ABC-A1B1C1中,CA=CB=4,AB=2,CC1=2,E,F分别为AC,CC1的中点,则直线EF与平面AA1B1B所成的角是()A.30°B.45°C.60°D.90°答案A解析连接AC1,则EF∥AC1,直线EF与平面AA1B1B所成的角,就是直线EF与平面AA1B1B所成的角,AC1与平面AA1B1B所成的角;作C1D⊥A1B1于D,连接AD,因为直三棱柱ABC-A1B1C1中,CA=CB=4,所以底面是等腰三角形,则C1D⊥平面AA1B1B,可知∠C1AD就是直线EF与平...