第9讲函数模型及其应用分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水().A.10吨B.13吨C.11吨D.9吨解析设该职工该月实际用水x吨,易知x>8,则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案D2.(·潍坊一模)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是().A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100解析根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C.答案C3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为().A.36万件B.18万件C.22万件D.9万件解析利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.答案B4.(·东莞调研)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是().解析由运输效率(单位时间的运输量)逐步提高得曲线上的点的切线斜率应该逐渐增大,故选B.答案B二、填空题(每小题5分,共10分)5.(·银川模拟)某电脑公司年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计年经营总收入要达到1690万元,且计划从年到年,每年经营总收入的年增长率相同,年预计经营总收入为________万元.解析设增长率为x,则有×(1+x)2=1690,1+x=,因此年预计经营总收入为×=1300(万元).答案13006.(·金华十校期末)有一批材料可以建成200m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为________(围墙厚度不计).解析设矩形场地的宽为xm,则矩形场地的长为(200-4x)m,面积S=x(200-4x)=-4(x-25)2+2500.故当x=25时,S取得最大值2500,即围成场地的最大面积为2500m2.答案2500m2三、解答题(共25分)7.(12分)(·湖北卷)为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解(1)由已知条件C(0)=8则k=40,因此f(x)=6x+20C(x)=6x+(0≤x≤10).(2)f(x)=6x+10+-10≥2-10=70(万元),当且仅当6x+10=,即x=5时等号成立.所以当隔热层为5cm时,总费用f(x)达到最小值,最小值为70万元.8.(13分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各项开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解设该店月利润余额为L,则由题设得L=Q×(P-14)×100-3600-2000,①由销量图易得Q=代入①式得L=(1)当14≤P≤20时,Lmax=450元,此时P=1...