2016年福建省高考数学模拟试卷(理科)(4月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a,b∈R,i是虚数单位,若a+i与2﹣bi互为共轭复数,则(a+bi)2=()A.3﹣4iB.3+4iC.5﹣4iD.5+4i2.执行如图所示的程序框图,若要使输出的y的值等于3,则输入的x的值可以是()A.1B.2C.8D.93.已知cos(α+)=,﹣<α<,则sin2α的值等于()A.B.﹣C.D.﹣4.已知a>0,b>0,则“ab>1”是“a+b>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件5.(5)若xy满足约束条件,则的取值范围为()A.[﹣,]B.[﹣,1]C.(﹣∞,﹣]∪[,+∞)D.(﹣∞,﹣]∪[1,+∞)6.已知等比数列{an}的各项均为正数且公比大于1,前n项积为Tn,且a2a4=a3,则使得Tn>1的n的最小值为()A.4B.5C.6D.77.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的各个面的面积中,最小的值为()A.2B.8C.4D.88.在△ABC中,∠A=,AB=2,AC=3,=2,则=()A.﹣B.﹣C.D.9.若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为()A.B.C.D.10.在三棱锥P﹣ABC中,PA=2,PC=2,AB=,BC=3,∠ABC=,则三棱锥P﹣ABC外接球的表面积为()A.4πB.πC.πD.16π11.已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,若点P是以F1F2为直径的圆与C右支的﹣个交点,F1P交C于另一点Q,且|PQ|=2|QF1|.则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x12.已知f(x)是定义在R上的减函数,其导函数f′(x)满足+x<1,则下列结论正确的是()A.对于任意x∈R,f(x)<0B.对于任意x∈R,f(x)>0C.当且仅当x∈(﹣∞,1),f(x)<0D.当且仅当x∈(1,+∞),f(x)>0二.填空题:本大题共4小题,每小题5分.13.若随机变量X~N(μ,σ2),且P(X>5)=P(X<﹣1)=0.2,则P(2<X<5)=.14.若(ax+)(2x+)5展开式中的常数项为﹣40,则a=.15.若数列{an}的各项均为正数,前n项和为Sn,且a1=1,Sn+1+Sn=(n∈N*),则a25=.16.已知点,且平行四边形ABCD的四个顶点都在函数的图象上,则四边形ABCD的面积为.三.解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC中,B=,点D在边AB上,BD=1,且DA=DC.(Ⅰ)若△BCD的面积为,求CD;(Ⅱ)若AC=,求∠DCA.18.如图,三棱柱ABC﹣A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,∠ABB1=60°.(Ⅰ)证明:AB⊥B1C;(Ⅱ)若B1C=2,求AC1与平面BCB1所成角的正弦值.19.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表送餐单数3839404142天数2040201010乙公司送餐员送餐单数频数表送餐单数3839404142天数1020204010(Ⅰ)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;(Ⅱ)若将频率视为概率,回答以下问题:(ⅰ)记乙公司送餐员日工资X(单位:元),求X的分布列和数学期望;(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.20.已知抛物线E:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于S,T两点,以P(3,0)为圆心的圆过点S,T,且∠SPT=90°(Ⅰ)求抛物线E和圆P的方程;(Ⅱ)设M是圆P上的点,过点M且垂直于FM的直线l交E于A,B两点,证明:FA⊥FB.21.已知函数f(x)=ax﹣ln(x+1),g(x)=ex﹣x﹣1.曲线y=f(x)与y=g(x)在原点处的切线相同(Ⅰ)求f(x)的单调区间;(Ⅱ)若x≥0时,g(x)≥kf(x),求k的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-1...