2.4圆的方程2.4.1圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点)2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点)通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.“南昌之星”摩天轮2006年建成时是世界上最高的摩天轮,它位于江西省南昌市红谷滩新区红角洲赣江边上的赣江市民公园,是南昌市标志性建筑.该摩天轮总高度为160米,转盘直径为153米.请问游客在摩天轮转动过程中离摩天轮中心的距离一样吗?若以摩天轮中心所在位置为原点,建立平面直角坐标系,游客在任一点(x,y)的坐标满足什么关系?1.圆的标准方程(1)圆的定义:平面上到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以原点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2.点与圆的位置关系(x-a)2+(y-b)2=r2(r>0),其圆心为C(a,b),半径为r,点P(x0,y0),设d=|PC|=.位置关系d与r的大小图示点P的坐标的特点点在圆外d>r(x0-a)2+(y0-b)2>r2点在圆上d=r(x0-a)2+(y0-b)2=r2点在圆内d<r(x0-a)2+(y0-b)2<r21.思考辨析(正确的打“√”,错误的打“×”)(1)方程(x-a)2+(y-b)2=m2表示圆.()(2)若圆的标准方程是(x-a)2+(y-b)2=m2(m≠0),则圆心为(a,b),半径为m.()(3)圆心是原点的圆的标准方程是x2+y2=r2(r>0).()[提示](1)×(2)×(3)√2.圆(x-2)2+(y+3)2=2的圆心和半径分别是()A.(-2,3),1B.(2,-3),3C.(-2,3),D.(2,-3),D[由圆的标准方程可得圆心为(2,-3),半径为.]3.以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2B.x2+y2=4C.(x-2)2+(y-2)2=8D.x2+y2=B[以原点为圆心,2为半径的圆,其标准方程为x2+y2=4.]4.已知点P(1,-1)在圆(x+2)2+y2=m的内部,则实数m的取值范围是________.m>10[由条件知(1+2)2+(-1)2<m,解得m>10.]点与圆的位置关系【例1】已知圆的圆心M是直线2x+y-1=0与直线x-2y+2=0的交点,且圆过点P(-5,6),求圆的标准方程,并判断点A(2,2),B(1,8),C(6,5)是在圆上,在圆内,还是在圆外?[思路探究]先求出两直线的交点坐标即圆心坐标,再求出半径并写出方程;求出A,B,C各点与圆心的距离,分别与半径比较,判断出点与圆的位置关系.[解]解方程组得∴圆心M的坐标为(0,1),半径r=|MP|==5.∴圆的标准方程为x2+(y-1)2=50. |AM|==<r,∴点A在圆内. |BM|===r,∴点B在圆上. |CM|==>r,∴点C在圆外.∴圆的标准方程为x2+(y-1)2=50,且点A在圆内,点B在圆上,点C在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.[跟进训练]1.已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P1(-1,0),P2(1,-1),P3(3,-4)和圆的位置关系.[解]因为圆心是C(-3,-4),且经过原点,所以圆的半径r==5,所以圆的标准方程是(x+3)2+(y+4)2=25.因为|P1C|===2<5,所以P1(-1,0)在圆内;因为|P2C|==5,所以P2(1,-1)在圆上;因为|P3C|==6>5,所以P3(3,-4)在圆外.求圆的标准方程【例2】求过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的标准方程.[思路探究]法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解]法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2,由已知条件知解此方程组,得故所求圆的标准方程为(x-1)2+(y-1)2=4.法二:设点C为...