电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第2章 圆锥曲线与方程 2.4.1 抛物线及其标准方程(教学用书)教案 新人教A版选修2-1-新人教A版高二选修2-1数学教案VIP免费

高中数学 第2章 圆锥曲线与方程 2.4.1 抛物线及其标准方程(教学用书)教案 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第1页
1/8
高中数学 第2章 圆锥曲线与方程 2.4.1 抛物线及其标准方程(教学用书)教案 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第2页
2/8
高中数学 第2章 圆锥曲线与方程 2.4.1 抛物线及其标准方程(教学用书)教案 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第3页
3/8
2.4抛物线2.4.1抛物线及其标准方程学习目标核心素养1.掌握抛物线的定义及焦点、准线的概念.(重点)2.掌握抛物线的标准方程及其推导过程.(易错点)3.明确p的几何意义,并能解决简单的求抛物线标准方程问题.(难点)1.通过抛物线定义的学习,培养数学抽象核心素养.2.通过抛物线定义及标准方程的应用,培养学生的直观想象、数学建模等核心素养.1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.思考1:抛物线的定义中,若点F在直线l上,那么点的轨迹是什么?[提示]点的轨迹是过点F且垂直于直线l的直线.2.抛物线的标准方程图形标准方程焦点坐标准线方程y2=2px(p>0)Fx=-y2=-2px(p>0)Fx=x2=2py(p>0)Fy=-x2=-2py(p>0)Fy=思考2:(1)抛物线方程中p(p>0)的几何意义是什么?(2)根据抛物线方程如何确定焦点的位置?[提示](1)p的几何意义是焦点到准线的距离.(2)根据抛物线方程中一次式±2px,±2py来确定焦点位置,“x,y”表示焦点在x轴或y轴上,系数“±2p”的正负确定焦点在坐标轴的正半轴或负半轴上.1.抛物线x2+8y=0的焦点坐标是()A.(0,2)B.(0,-2)C.(0,4)D.(0,-4)B[抛物线x2=-8y的焦点在y轴的负半轴上,且=2,因此焦点坐标是(0,-2).]2.抛物线y2=8x的焦点到准线的距离是()A.1B.2C.4D.8C[由y2=8x得p=4,即焦点到准线的距离为4.]3.抛物线x=4y2的准线方程是()A.y=B.y=-1C.x=-D.x=C[由x=4y2得y2=x,故准线方程为x=-.]4.抛物线y2=-12x上与焦点的距离等于9的点的坐标是________.(-6,6)或(-6,-6)[由y2=-12x知p=6,准线方程为x=3,设抛物线上点P(x,y),由抛物线定义可知-x+3=9,x=-6,将x=-6代入y2=-12x,得y=±6,所以满足条件的点为(-6,6)或(-6,-6).]求抛物线的标准方程【例1】根据下列条件分别求出抛物线的标准方程:(1)准线方程为y=;(2)焦点在y轴上,焦点到准线的距离为5;(3)经过点(-3,-1);(4)焦点为直线3x-4y-12=0与坐标轴的交点.思路探究:(1)(2)(3)(4)→[解](1)因为抛物线的准线交y轴于正半轴,且=,则p=,所以所求抛物线的标准方程为x2=-y.(2)已知抛物线的焦点在y轴上,可设方程为x2=2my(m≠0),由焦点到准线的距离为5,知|m|=5,m=±5,所以满足条件的抛物线有两条,它们的标准方程分别为x2=10y和x2=-10y.(3) 点(-3,-1)在第三象限,∴设所求抛物线的标准方程为y2=-2px(p>0)或x2=-2py(p>0).若抛物线的标准方程为y2=-2px(p>0),则由(-1)2=-2p×(-3),解得p=;若抛物线的标准方程为x2=-2py(p>0),则由(-3)2=-2p×(-1),解得p=.∴所求抛物线的标准方程为y2=-x或x2=-9y.(4)对于直线方程3x-4y-12=0,令x=0,得y=-3;令y=0,得x=4,∴抛物线的焦点为(0,-3)或(4,0).当焦点为(0,-3)时,=3,∴p=6,此时抛物线的标准方程为x2=-12y;当焦点为(4,0)时,=4,∴p=8,此时抛物线的标准方程为y2=16x.∴所求抛物线的标准方程为x2=-12y或y2=16x.1.用待定系数法求抛物线标准方程的步骤2.求抛物线的标准方程时需注意的三个问题(1)把握开口方向与方程间的对应关系.(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=ny,这样可以减少讨论情况的个数.(3)注意p与的几何意义.[跟进训练]1.若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.8[答案]D抛物线的定义的应用【例2】(1)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程;(2)已知抛物线y2=4x的焦点是F,点P是抛物线上的动点,对于定点A(4,2),求|PA|+|PF|的最小值,并求出取最小值时的P点坐标;(3)已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.思路探究:(1)利用抛物线定义先求抛物线的方程,再求m和准线方程.(2)利用抛物线的定义,把|PF|转化为到准线的距离.(3)利用|MC|的长度比点M到直线y=2的距离大1求解.[解](1)设所求抛物线方程为x2=-2p...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第2章 圆锥曲线与方程 2.4.1 抛物线及其标准方程(教学用书)教案 新人教A版选修2-1-新人教A版高二选修2-1数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部