电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第2章 圆锥曲线与方程 2.3 2.3.1 抛物线及其标准方程(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案VIP免费

高中数学 第2章 圆锥曲线与方程 2.3 2.3.1 抛物线及其标准方程(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第1页
1/6
高中数学 第2章 圆锥曲线与方程 2.3 2.3.1 抛物线及其标准方程(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第2页
2/6
高中数学 第2章 圆锥曲线与方程 2.3 2.3.1 抛物线及其标准方程(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第3页
3/6
2.3抛物线2.3.1抛物线及其标准方程学习目标核心素养1.掌握抛物线的定义及焦点、准线的概念.(重点)2.掌握抛物线的标准方程及其推导过程.(易错点)3.明确p的几何意义,并能解决简单的求抛物线标准方程问题.(难点)1.通过抛物线的定义及标准方程的学习,培养直观想象的素养.2.借助抛物线的定义解题,提升逻辑推理的素养.1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.思考1:抛物线的定义中,若点F在直线l上,那么点的轨迹是什么?[提示]点的轨迹是过点F且垂直于直线l的直线.2.抛物线的标准方程图形标准方程焦点坐标准线方程y2=2px(p>0)Fx=-y2=-2px(p>0)Fx=x2=2py(p>0)Fy=-x2=-2py(p>0)Fy=思考2:(1)抛物线方程中p(p>0)的几何意义是什么?(2)根据抛物线方程如何确定焦点的位置?[提示](1)p的几何意义是焦点到准线的距离.(2)根据抛物线方程中一次式±2px,±2py来确定焦点位置,“x,y”表示焦点在x轴或y轴上,系数“±2p”的正负确定焦点在坐标轴的正半轴或负半轴上.1.抛物线y2=-8x的焦点坐标是()A.(2,0)B.(-2,0)C.(4,0)D.(-4,0)B[抛物线y2=-8x的焦点在x轴的负半轴上,且=2,因此焦点坐标是(-2,0).]2.抛物线y2=8x的焦点到准线的距离是()A.1B.2C.4D.8C[由y2=8x得p=4,即焦点到准线的距离为4.]3.抛物线x=4y2的准线方程是()A.y=B.y=-1C.x=-D.x=C[由x=4y2得y2=x,故准线方程为x=-.]求抛物线的标准方程【例1】根据下列条件分别求出抛物线的标准方程:(1)准线方程为y=;(2)焦点在y轴上,焦点到准线的距离为5;(3)经过点(-3,-1);(4)焦点为直线3x-4y-12=0与坐标轴的交点.[解](1)因为抛物线的准线交y轴于正半轴,且=,则p=,所以所求抛物线的标准方程为x2=-y.(2)已知抛物线的焦点在y轴上,可设方程为x2=2my(m≠0),由焦点到准线的距离为5,知|m|=5,m=±5,所以满足条件的抛物线有两条,它们的标准方程分别为x2=10y和x2=-10y.(3) 点(-3,-1)在第三象限,∴设所求抛物线的标准方程为y2=-2px(p>0)或x2=-2py(p>0).若抛物线的标准方程为y2=-2px(p>0),则由(-1)2=-2p×(-3),解得p=;若抛物线的标准方程为x2=-2py(p>0),则由(-3)2=-2p×(-1),解得p=.∴所求抛物线的标准方程为y2=-x或x2=-9y.(4)对于直线方程3x-4y-12=0,令x=0,得y=-3;令y=0,得x=4,∴抛物线的焦点为(0,-3)或(4,0).当焦点为(0,-3)时,=3,∴p=6,此时抛物线的标准方程为x2=-12y;当焦点为(4,0)时,=4,∴p=8,此时抛物线的标准方程为y2=16x.∴所求抛物线的标准方程为x2=-12y或y2=16x.求抛物线的标准方程的方法定义法根据定义求p,最后写标准方程待定系数法设标准方程,列有关的方程组求系数直接法建立恰当的坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程提醒:当抛物线的焦点位置不确定时,应分类讨论,也可以设y2=ax或x2=ay(a≠0)的形式,以简化讨论过程.[跟进训练]1.(1)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.8(2)已知抛物线C的准线与直线x=-3之间的距离等于5,则抛物线C的标准方程为________.(1)D(2)y2=32x或y2=-8x[(2)由题意可知抛物线的准线方程为x=-8或x=2,即抛物线C的标准方程为y2=32x或y2=-8x.]抛物线方程的实际应用【例2】某隧道横断面由抛物线和矩形的三边组成,尺寸如图所示,某卡车载一集装箱,箱宽3m,车与箱共高4m,此车能否通过此隧道?请说明理由.[思路点拨]可先建立坐标系并把图中的相关数据转化为曲线上点的坐标,求出抛物线方程,然后比较当车辆从正中通过时,1.5m处的抛物线距地面高度与车辆高度的大小进行判断.[解]建立如图所示的平面直角坐标系.设抛物线方程为x2=-2py(p>0),当x=3时,y=-3,即点(3,-3)在抛物线上.代入得2p=3,故抛物线方程为x2=-3y.已知集装箱的宽为3m,当x=时,y=-,而隧道高为5m,所以5-=4>4.故卡车可通过此隧道.求抛物线实际应用的五个步骤[跟进训练]2.一辆...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第2章 圆锥曲线与方程 2.3 2.3.1 抛物线及其标准方程(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部