电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 2.2 直线的方程 2.2.2.2 直线方程的一般式教案 新人教B版必修2-新人教B版高一必修2数学教案VIP免费

高中数学 2.2 直线的方程 2.2.2.2 直线方程的一般式教案 新人教B版必修2-新人教B版高一必修2数学教案_第1页
1/4
高中数学 2.2 直线的方程 2.2.2.2 直线方程的一般式教案 新人教B版必修2-新人教B版高一必修2数学教案_第2页
2/4
高中数学 2.2 直线的方程 2.2.2.2 直线方程的一般式教案 新人教B版必修2-新人教B版高一必修2数学教案_第3页
3/4
2.2.2.2直线方程的一般式示范教案\s\up7()教学分析通过讨论直线的斜截式方程与二元一次方程的关系,归纳、总结出了结论:关于x、y的二元一次方程都表示一条直线,接着给出了直线的一般式方程的概念.同时,我们还可以得到结论:直线的方程都是关于x,y的二元一次方程,即对于每一条直线都可求出它的方程,而且是二元一次方程.三维目标1.掌握直线方程的一般式;了解直角坐标系中直线与关于x和y的一次方程的对应关系;培养学生树立辩证统一的观点;培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式;会将一般式化成斜截式和截距式,培养学生归纳、概括能力;渗透分类讨论、化归、数形结合等数学思想.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:归纳出直线的一般式方程.课时安排1课时\s\up7()导入新课设计1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线的方程呢?这节课我们就来研究这个问题.设计2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A(1,8);(2)在x轴和y轴上的截距分别是-7,7;(3)经过两点P1(-1,6)、P2(2,9);(4)在y轴上的截距是7,倾斜角是45°.由两个独立条件,请学生写出直线方程的“特殊”形式分别为y-8=x-1、+=1、=、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式.推进新课讨论结果:(1)二元一次方程的形式:Ax+By+C=0.(2)直线y=kx+b化为kx-y+b=0.直线x=x1化为x-0·y-x1=0.因此都能化为二元一次方程的形式,即有以下结论:直线的方程都是关于x,y的二元一次方程.1(3)关于x,y的二元一次方程的一般形式是Ax+By+C=0,①其中A,B不同时为0.下面分B≠0和B=0两种情况加以讨论:①当B≠0时,方程①可化为y=-x-.这是直线的斜截式方程.它表示斜率为-,在y轴上的截距为-的直线.②当B=0时,由于A,B不同时为0,必有A≠0,于是方程①可化为x=-.它表示一条与y轴平行或重合的直线.根据以上讨论,我们又得到下面的结论:关于x,y的二元一次方程都表示一条直线.(4)直线与二元一次方程的关系:①直线的方程都是关于x,y的二元一次方程;②关于x,y的二元一次方程都表示一条直线.因此,关于x,y的二元一次方程是直线的方程,我们把方程Ax+By+C=0(A2+B2≠0)叫做直线的一般式方程.思路1例1已知直线通过点(-2,5),且斜率为-,求此直线的一般式方程.解:由直线方程的点斜式,得y-5=-(x+2),整理,得所求直线方程为3x+4y-14=0.变式训练1.过点A(4,-3),且斜率为-的直线的一般式方程是______.答案:2x+3y+1=02.过A(1,1),B(-1,3)的直线的一般式方程是______.答案:x+y-2=0例2求直线l:2x-3y+6=0的斜率及在y轴上的截距.解:已知直线方程可化为y=x+2.所以直线l的斜率k=,在y轴上的截距是2.点评:本题主要考查将直线的一般式方程化为斜截式方程.变式训练1.直线x-y+4=0的斜率为______,倾斜角=______.答案:30°2.已知直线mx+ny+12=0在x轴、y轴上的截距分别是-3和4,求m、n的值.解法一:由截距意义,知直线经过A(-3,0)和Q(0,4)两点,因此有解得解法二:由截距已知,也可将mx+ny+12=0化为截距式得+=1.因此有解得2思路2例3设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件确定m的值.(1)l在x轴上的截距为-3;(2)l的倾斜角为135°;(3)直线l与x轴平行.解:(1)由于l在x轴上的截距为-3,则l过点(-3,0),∴(m2-2m-3)(-3)=2m-6,解得m=-或m=3(舍去),∴m=-.(2)由l的倾斜角α=135°,则斜率k=tan135°=-1,∴-=-1,解得m=-2,或m=-1(舍去).(3)由于l∥x轴,则l的斜率k=0,∴-=0解得m=3或m=-1(舍去).点评:本题(1)易错认为m=3也符合题意,通过(3)可以看出m=3时,l与x轴平行,此时,l在x轴上不存在截距.变式训练1.直线Ax+By+C=0,经过第一、二、三象限,则()A....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 2.2 直线的方程 2.2.2.2 直线方程的一般式教案 新人教B版必修2-新人教B版高一必修2数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部