电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数与方程的思想方法(2)--高考题选讲VIP免费

函数与方程的思想方法(2)--高考题选讲_第1页
1/11
函数与方程的思想方法(2)--高考题选讲_第2页
2/11
函数与方程的思想方法(2)--高考题选讲_第3页
3/11
函数与方程的思想方法(2)----高考题选讲考试中心对考试大纲的说明中指出:“高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相结合的角度进行深入考查.”因此,在数学学习中注重函数思想是相当重要的.对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,在用函数和方程思想指导解题时要经常思考下面一些问题:是否需要把一个代数式看成一个函数?是否需要把一个字母看作变量?如果把一个代数式看成了函数,把一个或几个字母看成了变量,那么这个函数有什么性质?如果一个问题从表面上看不是一个函数问题,能否构造一个函数来帮助解题?如果是一个方程,那么这个方程的根(例如根的虚实,正负,范围等)有什么要求?1.以函数为中心,考查通性通法【例1】设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是().A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)解:设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)为奇函数.又当x<0时,F′(x)=f′(x)g(x)+f(x)g′(x)>0,所以x<0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x>0时,F(x)也为增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3),所以选D.【点评】善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.题中就是构建函数F(x)=f(x)g(x),再根据题意明确该函数的性质,然后由不等式解集与函数图象间的关系使问题获得解决的.2.以函数为载体,考查综合推理和创新能力【例2】设函数f(x)=-(x∈R),区间M=[a,b](a

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数与方程的思想方法(2)--高考题选讲

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群