高三年级(2017届)第八次月考理科数学试卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则=A.B.C.D.【答案】A【解析】或,,故选A.2.若复数,则在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由,则,在复平面上对应的点位于第四象限,故选D.3.已知双曲线的一条渐近线方程是,则该双曲线的离心率等于A.B.C.D.【答案】C【解析】依题意,,故.4.命题“对任意,都有”的否定是A.对任意,都有B.不存在,使得C.存在,使得D.存在,使得【答案】D【解析】试题分析:因为全称命题的否定是特称命题,所以命题“对任意都有”的否定是:存在,使得.故D正确.考点:全程命题.5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中,甲所得为A.钱B.钱C.钱D.钱【答案】C【解析】甲、乙、丙、丁、戊五人依次设为等差数列的,,即,解得:,甲所得为钱,故选C.6.某三棱锥的三视图如图所示,该三棱锥的体积是()A.B.C.D.【答案】A【解析】试题分析:由三视图可知,该三棱锥底面是一个等腰直角三角形,直角边长为,该棱锥的高为,所以该三棱锥的体积为,故选A.考点:三视图.7.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够就近自由交谈,事先了解到的情况如下:甲是中国人,还会说英语.乙是法国人,还会说日语.丙是英国人,还会说法语.丁是日本人,还会说汉语.戊是法国人,还会说德语.则这五位代表的座位顺序应为A.甲丙丁戊乙B.甲丁丙乙戊C.甲乙丙丁戊D.甲丙戊乙丁【答案】D【解析】试题分析:这道题实际上是一个逻辑游戏,首先要明确解题要点:甲乙丙丁戊个人首尾相接,而且每一个人和相邻的两个人都能通过语言交流,而且个备选答案都是从甲开始的,因此,我们从甲开始推理.思路一:正常的思路,根据题干来作答.甲会说中文和英语,那么甲的下一邻居一定是会说英语或者中文的,以此类推,得出答案.思路二:根据题干和答案综合考虑,运用排除法来解决,首先,观察每个答案中最后一个人和甲是否能够交流,戊不能和甲交流,因此,B,C不成立,乙不能和甲交流,A错误,因此,D正确.考点:演绎推理.8.执行如下图所示的程序框图(算法流程图),输出的结果是A.4B.12C.84D.168【答案】C【解析】模拟执行程序可得:,满足条件,,,;满足条件,,,;满足条件,,,;不满足条件,退出循环,则输出,故选C.9.如图,三棱锥中,,,且,则三棱锥的外接球表面积为A.B.C.D.【答案】B【解析】 面,面,∴, ,,∴面, 面,∴,取的中点,则,∴为球心, ,∴,∴球半径为,∴该三棱锥的外接球的表面积为,故选B.10.已知,把的图象向右平移个单位,再向上平移个单位,得到的图象,则A.B.C.D.【答案】B【解析】,把的图象向右平移个单位,可得,再向上平移个单位,得到的图象,则,故选B.点睛:本题主要考查三角恒等变换,函数的图象变换规律,求三角函数的值,属于基础题;三点提醒(1)要弄清楚是平移哪个函数的图象,得到哪个函数的图象;(2)要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(3)由的图象得到的图象时,需平移的单位数应为,而不是11.已知抛物线的焦点为,准线为,过点的直线与抛物线交于两点,若MR,垂足为,且,则直线的斜率为A.B.C.D.【答案】C【解析】过作,交于,,交于,抛物线的定义可知:,,由,则为等腰三角形,∴,则,∴,即,则,则,则直线的倾斜角,则直线的斜率,故选C.12.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A.B.C.D.(2,)【答案】D【解析】函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根,由函数图象可知,令,方程化为:,,开口向下,对称轴为:,可知:的最大值为:...