2018版高考数学大一轮复习专题探究课三高考中数列问题的热点题型理新人教版(建议用时:70分钟)1.(2015·重庆卷)已知等差数列{an}满足a3=2,前3项和S3=.(1)求{an}的通项公式;(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.解(1)设{an}的公差为d,则由已知条件得a1+2d=2,3a1+d=,化简得a1+2d=2,a1+d=,解得a1=1,d=,故{an}的通项公式an=1+,即an=.(2)由(1)得b1=1,b4=a15==8.设{bn}的公比为q,则q3==8,从而q=2,故{bn}的前n项和Tn===2n-1.2.(2017·东北三省四校模拟)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.解(1)依题意得解得∴an=2n+1.(2)∵=3n-1,∴bn=an·3n-1=(2n+1)·3n-1,∴Tn=3+5×3+7×32+…+(2n+1)×3n-1,3Tn=3×3+5×32+7×33+…+(2n-1)×3n-1+(2n+1)×3n,两式相减得,-2Tn=3+2×3+2×32+…+2×3n-1-(2n+1)×3n=3+2×-(2n+1)×3n=-2n×3n,∴Tn=n×3n.3.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{an}的通项公式;(2)设bn=,试求数列{bn}的前n项和Tn.解(1)设二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b.由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,所以Sn=3n2-2n.当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2×1=6×1-5,也适合上式,所以an=6n-5(n∈N*).(2)由(1)得bn===·,故Tn===.4.在数列{an}中,log2an=2n+1,令bn=(-1)n-1·,求数列{bn}的前n项和Tn.解由题意得bn=(-1)n-1=(-1)n-1.当n为偶数时,Tn=-+-…-=-;当n为奇数时,Tn=-+-…+=+,故Tn=5.(2017·兰州模拟)正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.(1)解由S-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.由于{an}是正项数列,所以Sn>0,Sn=n2+n.于是a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,又a1=2=2×1.综上,数列{an}的通项an=2n.(2)证明由于an=2n,bn=,则bn==.Tn==<=.所以对于任意的n∈N*,都有Tn<.6.已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=anlogan,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.解(1)设等比数列{an}的首项为a1,公比为q.依题意,有2(a3+2)=a2+a4,代入a2+a3+a4=28,得a3=8.∴a2+a4=20,∴解得或又{an}单调递增,∴∴an=2n.(2)bn=2n·log2n=-n·2n,∴-Sn=1×2+2×22+3×23+…+n×2n,①∴-2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,②①-②,得Sn=2+22+23+…+2n-n×2n+1=-n×2n+1=2n+1-n×2n+1-2.由Sn+(n+m)an+1<0,得2n+1-n×2n+1-2+n×2n+1+m×2n+1<0对任意正整数n恒成立,∴m·2n+1<2-2n+1,即m<-1对任意正整数n恒成立.∵-1>-1,∴m≤-1,即m的取值范围是(-∞,-1].