2014-2015学年湖南省长沙一中高三(上)第五次月考数学试卷(理科)一、选择题:每小题5分,共50分.在四个选项中只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.在等差数列{an}中,a2=1,a4=5,则{an}的前5项和S5=()A.7B.15C.20D.253.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480B.481C.482D.4834.曲线y=cosx,与坐标轴围成的面积是()A.4B.2C.D.35.执行如图的程序框图,如果输入的N的值是6,那么输出的p的值是()A.15B.105C.120D.7206.已知命题p:函数y=2﹣ax+1恒过(1,2)点;命题q:若函数f(x﹣1)为偶函数,则f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是()A.12πB.4πC.3πD.12π18.已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]9.设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.3x±4y=0B.3x±5y=0C.4x±3y=0D.5x±4y=010.已知函数g(x)=x|a﹣x|+2x,若存在a∈[﹣2,3],使得函数y=g(x)﹣at有三个零点,则实数t的取值范围是()A.(,)B.(2,)C.(2,)D.(2,)一、填空题:每小题5分,共25分.选做题:请在11,12,13三题中任选两题作答,如果全做,则按前两题计分.11.在极坐标系中,圆ρ=4sinθ与直线ρ(sinθ+cosθ)=4相交所得的弦长为.一、选做题:12.若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是.一、选做题:13.(2014秋•长沙校级月考)如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE,若∠D=35°,则∠ABE的大小为.14.已知函数f(x)=,则不等式1<f(x)<4的解集为.215.某铁路货运站对6列货运列车进行编组调组,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有.16.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量,则λ+μ的最小值为.三、解答题:共75分.解答应写出文字说明、证明过程和演算步骤.17.(12分)(2015•衡阳三模)在△ABC中,角A、B、C所对的边为a、b、c,且满足cos2A﹣cos2B=(1)求角B的值;(2)若且b≤a,求的取值范围.18.(12分)(2015•惠州模拟)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为,求锐二面角A﹣A1C﹣B的大小.19.(12分)(2014•厦门二模)自驾游从A地到B地有甲乙两条线路,甲线路是A﹣C﹣D﹣B,乙线路是A﹣E﹣F﹣G﹣H﹣B,其中CD段、EF段、GH段都是易堵车路段,假设这三条路段堵车与否相互独立,这三条路段的堵车概率及平均堵车时间如表1所示.表1:CD段EF段GH段堵车概率xy3平均堵车时间(单位:小时)a21经调查发现,堵车概率x在(,1)上变化,y在(0,)上变化.在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.表2:堵车时间(单位:小时)频数[0,1]8(1,2]6(2,3]38(3,4]24(4,5]24(Ⅰ)求CD段平均堵车时间a的值;(Ⅱ)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.20.(13分)(2014•深圳一模)如图,直线l:y=x+b(b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.(1)求直线l及抛物线C的方程;(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于...