课时跟踪检测(四十六)直线与圆、圆与圆的位置关系一抓基础,多练小题做到眼疾手快1.直线kx+y-2=0(k∈R)与圆x2+y2+2x-2y+1=0的位置关系是()A.相交B.相切C.相离D.与k值有关解析:选D圆心为(-1,1),所以圆心到直线的距离为=,所以直线与圆的位置关系和k值有关,故选D.2.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析:选B圆的标准方程为(x+1)2+(y-1)2=2-a(a<2),圆心C(-1,1),半径r满足r2=2-a,则圆心C到直线x+y+2=0的距离d=,所以r2=22+()2=2-a⇒a=-4.3.已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是()A.B.1C.D.解析:选C圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线的距离d==,故点N到点M的距离的最小值为d-1=.4.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于________.解析:因为点A(1,2)在圆x2+y2=5上,故过点A的圆的切线方程为x+2y=5,令x=0,得y=.令y=0,得x=5,故所求三角形的面积S=××5=.答案:5.若圆x2+y2+mx-=0与直线y=-1相切,其圆心在y轴的左侧,则m=________.解析:圆的标准方程为2+y2=2,圆心到直线y=-1的距离=|0-(-1)|,解得m=±,因为圆心在y轴的左侧,所以m=.答案:二保高考,全练题型做到高考达标1.若直线l:y=kx+1(k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定解析:选A因为圆C的标准方程为(x+2)2+(y-1)2=2,所以其圆心坐标为(-2,1),半径为,因为直线l与圆C相切.所以=,解得k=±1,因为k<0,所以k=-1,所以直线l的方程为x+y-1=0.圆心D(2,0)到直线l的距离d==<,所以直线l与圆D相交.2.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为()A.,-4B.-,4C.,4D.-,-4解析:选A因为直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,所以直线y=kx与直线2x+y+b=0垂直,且直线2x+y+b=0过圆心,所以所以3.(2017·大连模拟)圆x2+y2+2y-3=0被直线x+y-k=0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k=()A.-1或--1B.1或-3C.1或-D.解析:选B由题意知,圆的标准方程为x2+(y+1)2=4.较短弧所对圆周角是90°,所以圆心(0,-1)到直线x+y-k=0的距离为r=.即=,解得k=1或-3.4.(2015·重庆高考)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.2解析:选C由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,∴圆心C(2,1)在直线x+ay-1=0上,∴2+a-1=0,∴a=-1,∴A(-4,-1).∴|AC|2=36+4=40.又r=2,∴|AB|2=40-4=36.∴|AB|=6.5.已知直线3x+4y-15=0与圆O:x2+y2=25交于A,B两点,点C在圆O上,且S△ABC=8,则满足条件的点C的个数为()A.1B.2C.3D.4解析:选C圆心O到已知直线的距离为d==3,因此|AB|=2=8,设点C到直线AB的距离为h,则S△ABC=×8×h=8,h=2,由于d+h=3+2=5=r(圆的半径),因此与直线AB距离为2的两条直线中一条与圆相切,一条与圆相交,故符合条件的点C有三个.6.若直线y=-x-2与圆x2+y2-2x=15相交于点A,B,则弦AB的垂直平分线方程的斜截式为________.解析:圆的方程可整理为(x-1)2+y2=16,所以圆心坐标为(1,0),半径r=4,易知弦AB的垂直平分线l过圆心,且与直线AB垂直,而kAB=-,所以kl=2.由点斜式方程可得直线l的方程为y-0=2(x-1),即y=2x-2.答案:y=2x-27.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为________.解析:由x2+y2+2x-4y-4=0得(x+1)2+(y-2)2=9,所以圆C的圆心坐标为C(-1,2),半径为3,由AC⊥BC,可知△ABC是直角边长为3的等腰直角三角形,故可得圆心C到直线x-y+a=0...