备战数学应考能力大提升典型例题例1已知数据x1,x2…,,x10的平均数=20,方差s2=0.015.求:(1)3x1,3x2…,,3x10的平均数和方差;(2)4x1-2,4x2-2…,,4x10-2的平均数和方差.解:(1)′=(3x1+3x2…++3x10)=(x1+x2…++x10)=3=3×20=60;s′2=[(3x1-3)2+(3x2-3)2…++(3x10-3)2]=[(x1-)2+(x2-)2…++(x10-)2]=9s2=9×0.015=0.135.(2)″=4-2=4×20-2=78;s″2=16s2=16×0.015=0.24.例2在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y与腐蚀时间x的一组数据如下表所示:x(秒)510152030405060y(微米)610111316171923(1)画出数据的散点图;(2)根据散点图,你能得出什么结论?(3)求回归方程.解:(1)散点图如图所示(2)结论:x与y是具有相关关系的两个变量,且对应n组观测值的n个点大致分布在一条直线附近,其中整体上与这n个点最接近的一条直线最能代表变量x与y之间的关系.(3)计算得r=0.979307992>0.75.所以,x与y有很强的线性相关关系,由计算器计算得a=6.616438≈6.62,b=0.269863≈0.27,y=6.62+0.27x.例3某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150)0.050合计④(1)根据上面频率分布表,推出①,②,③,④处的数值分别为,,,;(2)在所给的坐标系中画出区间[80,150]上的频率分布直方图;(3)根据题中信息估计总体:(i)120分及以上的学生数;(ii)平均分;(iii)成绩落在[126,150]中的概率.解:(1)①,②,③,④处的数值分别为:3,0.025,0.100,1.(2)频率分布直方图如图所示(3)(i)120分及以上的学生数为:(0.275+0.100+0.050)×5000=2125;(ii)平均分为:=85×0.025+95×0.050+105×0.200+115×0.300+125×0.275+135×0.100+145×0.050=117.5.(iii)成绩落在[126,150]中的概率为:P=×0.275+0.10+0.050=0.260.创新题型1.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1:生产能力分组[100,110)[110,120)[120,130)[130,140)[140,150)人数48x53表2:生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618(i)先确定x,y,再完成下列频率分布直方图,就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).2.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:API0~5051~100101~150151~200201~250251~300>300级别ⅠⅡⅢ1Ⅲ2Ⅳ1Ⅳ2Ⅴ状况优良轻微污染轻度污染中度污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.(1)求直方图中x的值;(2)计算一年中空气质量分别为良和轻微污染的天数.答案1.解:(1)A类工人中和B类工人中分别抽查25名和75名.(2)(ⅰ)由4+8+x+5+3=25,得x=5,6+y+36+18=75,得y=15.频率分布直方图如下:从直方图可以判断:B类工人中个体间的差异程度更小.(ⅱ)Ax=425×105+825×115+525×125+525×135+325×145=123,Bx=675×115+1575×125+3675×135+1875×145=133.8,x=25100×123+75100×133.8=131.1.A类工人生产能力的平均数,B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.