大庆铁人中学高二学年下学期假期验收考试数学试题命题人:审题人:试题说明:1、本试题满分150分,答题时间120分钟。2、请将答案填写在答题卡上,考试结束后只交答题卡。第Ⅰ卷选择题部分一、选择题(每小题只有一个选项正确,每小题5分,共60分。)1、下列各组数据中,数值相等的是A.和B.和C.和D.和2、儿子的身高和父亲的身高是A.确定性关系B.相关关系C.函数关系D.无任何关系3、下列四个命题中,其中为真命题的是A.B.C.,使D.4、将正弦曲线经过伸缩变换后得到曲线的方程的周期为A.B.C.D.5、用秦九韶算法计算,当时,A.16B.C.32D.6.已知p:x≥3或x≤-2,q:x∈Z,p∧q与¬q都是假命题,则x的可取值有().A.5个B.3个C.4个D.无数个7.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.78.已知x与y之间的一组数据:x0123ym35.57已求得关于y与x的线性回归方程y=2.2x+0.7,则m的值为()A.1B.0.85C.0.7D.0.59.阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A.S=2*i-2B.S=2*i-1C.S=2*iD.S=2*i+4110.已知三棱锥的底面是以AB为斜边的等腰直角三角形,,则三棱锥的外接球的球心到平面ABC的距离是A.B.1C.D.11.F1、F2是椭圆+=1的两个焦点,A为椭圆上一点,且∠AF1F2=45°,则△AF1F2的面积为()A.7B.C.D.12.已知圆的一条切线与双曲线C:有两个交点,则双曲线C的离心率的取值范围是A.B.C.D.第Ⅱ卷解答题部分二、填空题(本大题共有4个小题,每小题5分,共20分)13.曲线C的参数方程为,为参数,则此曲线的极坐标方程为______.14.设O是坐标原点,F是抛物线)0(22ppxy的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则||OA为_____________________.15.平面上画了一些彼此相距20cm的平行线,把一枚半径为4cm的硬币任意掷在这平面上,则硬币与任一条平行线相碰的概率为______.16.若命题“”是假命题,则实数a的取值范围是______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设函数.Ⅰ若a是从、、0、1、2五个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求函数无零点的概率;Ⅱ若a是从区间任取的一个数,b是从区间任取的一个数,求函数无零点的概率.18.已知曲线C1的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求的值.19.某种商品价格与该商品日需求量之间的几组对照数据如表:价格元10152025302日需求量1110865Ⅰ求y关于x的线性回归方程;Ⅱ当价格元时,日需求量y的预测值为多少?线性回归方程中系数计算公式:,其中表示样本均值.20.如图,四棱柱中,平面ABCD,底面ABCD是边长为1的正方形,侧棱.Ⅰ求证:平面;Ⅱ求直线与平面所成角的正弦值.(文)求二面角的余弦值.(理)21.(12分)在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.(1)求该考场考生中“阅读与表达”科目中成绩等级为A的人数;(2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(3)已知参加本考场测试的考生中,恰有2人的两科成绩等级均为A.在至少一科成绩等级为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.322.设分别是直线和上的两个动点,并且,动点P满足,记动点P的轨迹为C.求曲线C的方程;若点D的坐标为是曲线C上的两个动点,并且,求实数的取值范围;是曲线C上的任意两点,并且直线MN不与y轴垂直,线段MN的中垂线l交y轴于点,求的取值范围.数学答案1——6BBBCB7——12CDCABD13.14.15.16.17.解:Ⅰ函数无零点等价于方...