1.理解取有限个体的离散型随机变量及其分布列的概念,会求简单的离散型随机变量的分布列.2.理解取有限个值的离散型随机变量的均值、方差的概念,能计算简单的离散型随机变量的均值、方差,并能解决一些实际问题.0.915A1.5B1.35C13.51.D15有一批豌豆种子,如果每一粒发芽的概率为,播下粒种子,则种子发芽的粒数的均值为....15,0.9150.913.5.C.XXBEX设种子发芽的粒数为,则~,因此解故选析:1EXnpp有关二项分布的期望与方差公式记忆错误,误认为易错点:.12A.B.334C.D192.ABCAE两封信随机投入、、三个空邮箱,邮箱中的信件数为,则.211222220,1,2244P0P1393911P2394412012.993B9CCE解依题设,的可能取值为,且,,,因此,故选析1,2,3.的可能取值错误地判定为易错点:52234A.B.7734C.D103..10XE某学校要从名男生和名女生中选出人为某社区服务的志愿者,若随机变量表示选出的志愿者中女生人数,则211525227722270,1,2C10CC10P0P1C21C21C1101014P2E012C2121217.B12X依题设,的可能取值为,则,,,,析故选解:X没有正确判定服从超几何分布,从而用排列知识计算随机变量取值易错点:的概率.01..4XEXDXab已知离散型随机变量的分布列如下表.若,,则,112X-1012Pabc222211.01211101c200.126110001012201.6351.124a+b+cEXab-a+c+DXabca+cab依题设,①由,得,即②又,则,即③解①②得,解③析:____________1___2________________1__.3XYabab如果随机试验的结果可以用一个变量表示,那么这样的变量叫做①,随机变量常用字母,,,等表示.②叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做③若是随.随机变量,,其中、是常数,则也是机变量的概念随机变量.12i1().(1,2)____________________2__niiixxxxxinPxp概率分布列分布列:设离散型随机变量可能取的值为,,,,取每一个.离散型随机变量的值,的概率,则表称为④,概率分布列简称的分布列.ξx1x2…xi…xnPp1p2…pi…pn2C0,1,2_______()kkn-knpnkPkpqknq=1-pBnpnpp二项分布:如果一次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率是,其中,,,,我们称这样的随机变量服从⑤,记作~,,其中,为参数,并称为成功概率.3______________1XpPx两点分布:若随机变量的分布列是像这样的分布列称为两点分布列.如果随机变量的分布列为⑥,就称服从两点分布,且称为成功概率.X01P1-pp*4CCP0,1,2Cmin{}v..knkMNMnNMNnkkkmmMnnNMNnMN超几何分布:在含有件次品的件产品中,任取件,其中恰有件次品,则事件发生的概率为,,,,其中,,且,,,,称分布列为⑦如果随机变量的分布列为超几何分布列,则称随机变量服从超几何分布.00CCnMNMnNC11CCCnMNMnNCCCmnmMNMnN01…m…1122__________________________.___34iinnExpxpxpxp⑧若离散型随机变量的分布列为:则称为⑨离散型.离散型随机变量的分布列的性质.离散型随机变随机变量的均值反映了离散型随机变量取值的平量的均值均水平.ξx1x2…xi…xnPp1p2…pi…pn2211222n5xE__________.()nDxEpxEpp.离散型随机变量的方差称为随机变量的方差,其算术平方根为随机变量的⑩,记作离散型随机变量的方差反映了离散型随机变量取值相对于均值的平均波动大小即取值的稳定性.1__________()2______()3__________4()______.5_____6_.EccEababcabDababDBnpEED,、、为常数;设、为常数,则、为常数;;若服从二项分布,即~,,则若服从两点分布,则,.性...