一、细胞运动性概述细胞的运动是机体新陈代谢与基本生命特征之一。在低等生物中,原始细胞通过变形和伪足活动趋近食物和远离伤害。在高级生物体的生命活动中,细胞的定向迁移与胚胎形成、神经发育、免疫应答、器官成熟等密切相关。人类的许多重大疾病及其治疗,如肿瘤转移,神经修复、干细胞功能再生等等都与细胞运动息息相关。细胞的运动依赖于细胞骨架(Cytoskeleton),细胞骨架除了承担胞内的物质运输之外,也是构成细胞运动性的物质基础,例如肌动蛋白是细胞运动伪足中最主要的结构单位当细胞感受到外界的刺激信息(如食物信号等),会伸出扁平的片层伪足,通过其前沿的不断延展和基部的收缩,以及细胞与支撑物之间的吸附、解吸附的动态循环,朝向刺激源运动。细胞的运动还具有粘附性(Adhesion)与趋向性(Polarization)的特点,不同的粘附因子与细胞外基质(Extracellular Matrix)相互作用一方面决定了细胞运动的分子信号调控,同时与大量的趋化因子共同决定了不同细胞的特定组织转移与偏好。图 1:细胞的定向迁移运动图 2:细胞的运动性与细胞骨架蛋白图 3:神经干细胞分化与神经元的定向迁移图 4:原生癌细胞的迁移与侵袭图 5:一个正在穿孔的肿瘤细胞的运动图 6:恶性黑色素瘤细胞侵入机体正常组织图 7:上皮细胞在伤口部位增殖,运动迁移,进行组织修复二、细胞运动性常用检测方法细胞运动性研究在发育生物学、神经生物学、癌症与干细胞生物学等诸多前沿科学领域具有重大研究意义。然而长期以来细胞运动性检测是一个技术难点,目前常规可用于细胞运动性评估的主要方法有:基于显微镜的形态观察(含荧光标记)、体外组织移植、细胞集落划痕和 Boyden Chamber 法,这些方法各有千秋,但都无法实现定量检测细胞定向迁移、癌细胞侵袭性以及细胞粘附性等,最近罗氏公司推出的基于 Boyden Chamber 原理的微电子细胞芯片检测技术(xCELLigence)实现了定量、动态、无标记对于大规模细胞迁移、侵袭、粘附性的检测,同时还可同步检测包括细胞增殖、凋亡等多项细胞生理学功能。1. 基于显微镜的形态观察(可免疫荧光标记)基于显微镜直接观察细胞运动性一般依赖活细胞工作站记录单一细胞的运动轨迹,如果通过染色标记可以观察细胞骨架的改变。该方案对显微系统要求高,难以同步观察细胞群落的整体状态,染色侵入式标记对细胞损伤大。 活细胞工作站观察非小细胞 共聚焦显微镜观察绿色荧光标记运动中的细胞肺癌(A549)的体外运动...