广东省珠海市金海岸中学 2012 届高三考前专题讲座:特征方程法求递推数列的通项公式一、(一阶线性递推式)设已知数列的项满足,其中求这个数列的通项公式。采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式 中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理 1:设上述递推关系式的特征方程的根为,则当时,为常数列,即, 其 中是 以为 公 比 的 等 比 数 列 , 即.证 明 : 因 为由 特 征 方 程 得作 换 元则当时,,数列是以 为公比的等比数列,故当时,,为 0 数列,故(证毕)下面列举两例,说明定理 1 的应用.例 1.已知数列满足:求解:作方程当时,数列是以为公比的等比数列.于是例 2.已知数列满足递推关系:其中 为虚数单位。当取何值时,数列是常数数列?解:作方程则要使为常数,即则必须二、(二阶线性递推式)定理 2:对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B 由决定(即把和,代入,得到关于 A、B 的方程组);当时,数列的通项为,其中 A,B 由决定(即把和,代入,得到关于 A、B的方程组)。例 3:已知数列满足,求数列的通项公式。解法一(待定系数——迭加法)由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,,,。把以上各式相加,得。。解法二(特征根法):数列:, 的特征方程是:。,。又由,于是故三、(分式递推式)定理 3:如果数列满足下列条件:已知的值且对于,都有(其中 p、q、r、h 均为常数,且),那么,可作特征方程.(1)当特征方程有两个相同的根 (称作特征根)时,若则若,则其中特别地,当存在使时,无穷数列不存在.(2)当特征方程有两个相异的根、(称作特征根)时,则,其中例 3、已知数列}{na满足性质:对于且求的通项公式.解:依定理作特征方程变形得其根为故特征方程有两个相异的根,使用定理 2 的第(2)部分,则有∴∴即例 5.已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?解:作特征方程变形得特征方程有两个相同的特征根依定理 2 的第(1)部分解答.(1) 对于都有(2) ∴ 令,得.故数列从第 5 项开始都不存在,当 ≤4,时,.(3) ∴∴令...