2. 1.1 第三课时无理数指数幂教案【教学目标】1.能熟练进行根式与分数指数幂间的互化。2.理解无理数指数幂的概念。【教学重难点】重点:实数指数幂的的运算及无理数指数幂的理解难点:无理数指数幂的理解【教学过程】1、导入新课同学们,既然我们把指数从正整数推广到整数,又从整数推广到分数,这样指数就推广到有理数,那么它是否也和数一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数,有理数到实数。并且知道在有理数到实数的扩充过程中,增添的是是实数。对无理数指数幂,也是这样扩充而来。这样我们这节课的主要内容是:教师板书课题2、新知探究提出问题(1)我们知道 2=1.41421356…,那么 1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而 1.42,1.415,1.4143,1.41422,…,是 2的什么近似值?学生自己阅读教材发现规律。(2)你能给教材上的思想起个名字吗?(3)一个正数的无理数次幂到底是一个什么性质的数呢?如25,根据你学过的知识,能做出判断并合理地解释吗?借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑是加以解释.问题(1)从近似值分类来考虑,一方面从大于 2的方向,另一方面从小于 2的方向.问题(2)对教材中图表的观察得出无限逼近是实数问题(3)在前两个问题基础之上,推广到一般情形,即由特殊到一般.讨论结果:充分表明25是一个实数,一般的结论即无理数指数幂的意义:一般地,无理数指数幂a(0a 且 是无理数)是一个确切的实数,也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数的概念又一次推广,类比实数的扩充,结合前面 的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相同呢?(3)你能给出实数指数幂的运算法则吗?活动:教师组织学生相互合作,交流探讨,引导他们类比,归纳.对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明1对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a(0a 且 是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实...