3.2.1 独立性检验的基本思想及其初步应用教学目标 (1)通过对典型案例的探究,了解独立性检验(只要求列联表)的基本思想、方法及初步应用; (2)经历由实际问题建立数学模型的过程,体会其基本方法。教学重点:独立性检验的基本方法教学难点:基本思想的领会及方法应用教学过程一、问题情境5 月 31 日是世界无烟日。有关医学研究表明 ,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了 9965 个人,其中吸烟者 2148 人,不吸烟者 7817 人。调查结果是:吸烟的 2148 人中有 49 人患肺癌,2099 人未患肺癌;不吸烟的 7817 人中有 42 人患肺癌,7775 人未患肺癌。问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动(1)引导学生将上述数据用下表(一)来表示:(即列联表)不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965 (2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中,有≈0.54%的人患肺癌;在吸烟的人中,有≈2.28%的 人患肺癌。问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大?三、建构数学1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系 。但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。2、独立性检验: (1)假设:患肺癌与吸烟没有关系。即:“吸烟与患肺癌相互独立”。用 A 表示不吸烟,B 表示不患肺癌,则有 P(AB)=P(A)P(B)若将表中“观测值”用字母代替,则得下表(二):患肺癌未患肺癌合计吸烟不吸烟合计学生活动:让学生利用上述字母来表示对应概率,并化简整理。思考交流:越小,说明患肺癌与吸烟之间的关系越 (强、弱)?(2)构造随机变量(其中)由此若成立,即患肺癌与吸烟没有关系,则 K2 的值应该很小。把表中的数据代入计算得 K2 的观测值 k 约为 56.632,统计学中有明确的结论,在成立的情况下,随机事件P(K2≥6.635)≈0.01。由此,我们有 99%的把握认为不成立,即有 99%的把握认为“患肺癌与吸烟有关系”。上面这种利用随机变量 K2 来确定是否能以一定把握认为“ 两个分类变量有关 ...