“直线的倾斜角和斜率”教案设计一、内容和内容解析内容:直线倾斜角与斜率的概念,斜率公式。内容解析:本课是人教版数学必修 2 第一节直线的倾斜角与斜率的第一课时,是高中解析几何内容的开始。直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是用坐标法研究直线性质的基础。本课不仅要理解两个概念、得到一个公式,更要了解几何问题代数化的过程,渗透解析几何的基本思想方法。本课有着开启全章,奠定基调,渗透方法的作用。倾斜角从几何角度描述了直线的倾斜程度。课本结合具体图形,在探索确定直线位置的几何要素中给出倾斜角概念。斜率从代数角度描述了直线的倾斜程度。课本借助“坡度”引出斜率概念。定义给出了直线的斜率与倾斜角的关系,沟通了刻画直线倾斜程度的几何要素与代数表示的关系。直线可由两点来确定,坐标平面内的点由其坐标确定,因此直线的斜率就可以用直线上两点的坐标来表示,这就是经过两点直线的斜率公式。“坐标法”与数形结合思想是本课内容蕴含的核心思想。教学重点:斜率概念及公式。二.目标和目标解析目标:理解直线的倾斜角和斜率的概念,并能结合三角函数掌握它们之间的关系;掌握过两点的直线的斜率公式。目标解析:1.在平面直角坐标系中,结合具体的图形,探索确定直线位置的几何要素,引出直线的倾斜角概念。结合动画演示,明确倾斜角的取值范围。2.借助坡度概念引出斜率概念,让学生体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识。3.能根据斜率的概念,掌握倾斜角和斜率之间的关系,并能根据斜率的两个计算公式,求出直线的斜率。4.初步了解坐标平面内的图形是如何进行量化和代数化的,了解“坐标法”。三.教学问题诊断分析1.两点确定一条直线是学生知道的。但如何认识直角坐标系这一“参照系”下确定直线的几何要素,对学生来说有点困难。所以在教学过程中可以引导学生先观察过一点的直线之间的不同点,再类比实际生活中描述航线的实际例子,从而发现需要增加的量,以及如何描述这个量,最后形成倾斜角的概念。2.引入斜率的概念时,教学中可充分利用学生已有的知识(坡度概念),引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念。因为在这节课里学生是初步接触坐标法,所以应将重点放在引导学生体会如何从形转1化到数的过程上,知道倾斜角和斜率都可以刻画直线的倾斜程度。3.在学习完...