1.1集合问题提出“集合”是日常生活中的一个常用词,现代汉语解释为:许多的人或物聚在一起.在现代数学中,集合是一种简洁、高雅的数学语言,我们怎样理解数学中的“集合”?(一)集合的含义知识探究(一)考察下列问题:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3)师大附中0705班的所有男同学;(4)平面上到定点O的距离等于定长的所有的点.思考1:上述每个问题都由若干个对象组成,每组对象的全体分别形成一个集合,集合中的每个对象都称为元素.上述4个集合中的元素分别是什么?思考3:组成集合的元素所属对象是否有限制?集合中的元素个数的多少是否有限制?思考4:美国NBA火箭队的全体队员是否组成一个集合?若是,这个集合中有哪些元素?思考5:试列举一个集合的例子,并指出集合中的元素.思考2:一般地,怎样理解“元素”与“集合”?把研究的对象称为元素,通常用小写拉丁字母a,b,c,…表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,…表示.知识探究(二)任意一组对象是否都能组成一个集合?集合中的元素有什么特征?思考1:某单位所有的“帅哥”能否构成一个集合?由此说明什么?集合中的元素必须是确定的(确定性)思考2:在一个给定的集合中能否有相同的元素?由此说明什么?集合中的元素是不重复出现的(互异性)思考3:0705班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的(无序性)知识探究(三)思考3:如果元素a是集合A中的元素,我们如何用数学化的语言表达?a属于集合A,记作aA思考4:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?a不属于集合A,记作aA自然数集(非负整数集):记作N正整数集:记作或*NN整数集:记作Z有理数集:记作Q实数集:记作R知识探究(四)思考:所有的自然数,正整数,整数,有理数,实数能否分别构成集合?自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用下列符号表示:知识探究(五)思考1:这两个集合分别有哪些元素?考察下列集合:(1)小于5的所有自然数组成的集合;(2)方程的所有实数根组成的集合.3xx(1)0,1,2,3,4;(2)-1,0,1思考2:由上述两组数组成的集合可分别怎样表示?(1){0,1,2,3,4};(2){-1,0,1}思考3:这种表示集合的方法叫什么名称?列举法思考4:列举法表示集合的基本模式是什么?把集合的元素一一列举出来,并用花括号“{}”括起来,即{,,,}abc知识探究(二)考察下列集合:(1)不等式的解组成的集合;(2)绝对值小于2的实数组成的集合.273x思考1:这两个集合能否用列举法表示?思考2:如何用数学式子描述上述两个集合的元素特征?(1)R,且;(2)R,且x5xx||2x思考3:上述两个集合可分别怎样表示?(1){R|};(2){R|}x5xx||2x思考4:这种表示集合的方法叫什么名称?描述法思考5:描述法表示集合的基本模式是什么?知识探究(三)思考1:与{}的含义是否相同?aa思考2:集合{1,2}与集合{(1,2)}相同吗?思考3:集合与集合相同吗?2{|,}yyxxR2{}yx思考4:集合的几何意义如何?2{(,)|,}xyyxxRxyo2yx理论迁移例1用列举法表示下列集合:(1)小于3的所有自然数组成的集合;(2)方程的所有实数根组成的集合;(3)由1~20以内的所有素数组成的集合;2xx解:(1)设小于3的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}(2)设方程的所有实数根组成的集合为B,那么B={0,1}2xx(3)设由1~20以内的所有素数组成的集合为C,那么A={2,3,5,7,11,13,17,19}例2试分别用列举法和描述法表示下列集合:(1)方程的所有根组成的集合;(2)由大于10小于20的所有整数组成的集合220x解:(1)设所求集合为A,用描述法表示为A={}220xRx2,2用列举法表示为A={}(2)设所求集合为B,用描述法表示为B={}1020xZx用列举法表示为B={11,12,13,14,15,16,17,18,19}随堂练习用适当的方法表示下列集合:(1)绝对值小于3的...